M7350/bootable/bootloader/lk/target/msm8660_surf/init.c

553 lines
14 KiB
C
Raw Normal View History

2024-09-09 08:52:07 +00:00
/*
* Copyright (c) 2009, Google Inc.
* All rights reserved.
* Copyright (c) 2009-2012, The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google, Inc. nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <debug.h>
#include <dev/keys.h>
#include <dev/ssbi.h>
#include <dev/gpio.h>
#include <lib/ptable.h>
#include <dev/flash.h>
#include <smem.h>
#include <mmc.h>
#include <platform/timer.h>
#include <platform/iomap.h>
#include <platform/gpio.h>
#include <baseband.h>
#include <reg.h>
#include <platform.h>
#include <gsbi.h>
#include <platform/scm-io.h>
#include <platform/machtype.h>
#include <crypto_hash.h>
static const uint8_t uart_gsbi_id = GSBI_ID_12;
/* Setting this variable to different values defines the
* behavior of CE engine:
* platform_ce_type = CRYPTO_ENGINE_TYPE_NONE : No CE engine
* platform_ce_type = CRYPTO_ENGINE_TYPE_SW : Software CE engine
* platform_ce_type = CRYPTO_ENGINE_TYPE_HW : Hardware CE engine
* Behavior is determined in the target code.
*/
static crypto_engine_type platform_ce_type = CRYPTO_ENGINE_TYPE_SW;
void keypad_init(void);
extern void dmb(void);
int target_is_emmc_boot(void);
void debug_led_write(char);
char debug_led_read();
uint32_t platform_id_read(void);
void setup_fpga(void);
int pm8901_reset_pwr_off(int reset);
int pm8058_reset_pwr_off(int reset);
int pm8058_rtc0_alarm_irq_disable(void);
static void target_shutdown_for_rtc_alarm(void);
void target_init(void)
{
target_shutdown_for_rtc_alarm();
dprintf(INFO, "target_init()\n");
setup_fpga();
/* Setting Debug LEDs ON */
debug_led_write(0xFF);
#if (!ENABLE_NANDWRITE)
keys_init();
keypad_init();
#endif
/* Display splash screen if enabled */
#if DISPLAY_SPLASH_SCREEN
display_init();
dprintf(SPEW, "Diplay initialized\n");
display_image_on_screen();
#endif
if (mmc_boot_main(MMC_SLOT, MSM_SDC1_BASE)) {
dprintf(CRITICAL, "mmc init failed!");
ASSERT(0);
}
}
unsigned board_machtype(void)
{
struct smem_board_info_v5 board_info_v5;
struct smem_board_info_v6 board_info_v6;
unsigned int board_info_len = 0;
unsigned smem_status = 0;
unsigned format = 0;
unsigned id = 0;
unsigned hw_platform = 0;
unsigned fused_chip = 0;
unsigned platform_subtype = 0;
static unsigned mach_id = 0xFFFFFFFF;
if (mach_id != 0xFFFFFFFF)
return mach_id;
/* Detect external msm if this is a "fusion" */
smem_status = smem_read_alloc_entry_offset(SMEM_BOARD_INFO_LOCATION,
&format, sizeof(format), 0);
if (!smem_status) {
if (format == 5) {
board_info_len = sizeof(board_info_v5);
smem_status =
smem_read_alloc_entry(SMEM_BOARD_INFO_LOCATION,
&board_info_v5,
board_info_len);
if (!smem_status) {
fused_chip = board_info_v5.fused_chip;
id = board_info_v5.board_info_v3.hw_platform;
}
} else if (format == 6) {
board_info_len = sizeof(board_info_v6);
smem_status =
smem_read_alloc_entry(SMEM_BOARD_INFO_LOCATION,
&board_info_v6,
board_info_len);
if (!smem_status) {
fused_chip = board_info_v6.fused_chip;
id = board_info_v6.board_info_v3.hw_platform;
platform_subtype =
board_info_v6.platform_subtype;
}
}
}
/* Detect SURF v/s FFA v/s Fluid */
switch (id) {
case 0x1:
hw_platform = HW_PLATFORM_SURF;
break;
case 0x2:
hw_platform = HW_PLATFORM_FFA;
break;
case 0x3:
hw_platform = HW_PLATFORM_FLUID;
break;
case 0x6:
hw_platform = HW_PLATFORM_QT;
break;
case 0xA:
hw_platform = HW_PLATFORM_DRAGON;
break;
default:
/* Writing to Debug LED register and reading back to auto detect
SURF and FFA. If we read back, it is SURF */
debug_led_write(0xA5);
if ((debug_led_read() & 0xFF) == 0xA5) {
debug_led_write(0);
hw_platform = HW_PLATFORM_SURF;
} else
hw_platform = HW_PLATFORM_FFA;
};
/* Use platform_subtype or fused_chip information to determine machine id */
if (format >= 6) {
switch (platform_subtype) {
case HW_PLATFORM_SUBTYPE_CSFB:
case HW_PLATFORM_SUBTYPE_SVLTE2A:
if (hw_platform == HW_PLATFORM_SURF)
mach_id = LINUX_MACHTYPE_8660_CHARM_SURF;
else if (hw_platform == HW_PLATFORM_FFA)
mach_id = LINUX_MACHTYPE_8660_CHARM_FFA;
break;
default:
if (hw_platform == HW_PLATFORM_SURF)
mach_id = LINUX_MACHTYPE_8660_SURF;
else if (hw_platform == HW_PLATFORM_FFA)
mach_id = LINUX_MACHTYPE_8660_FFA;
else if (hw_platform == HW_PLATFORM_FLUID)
mach_id = LINUX_MACHTYPE_8660_FLUID;
else if (hw_platform == HW_PLATFORM_QT)
mach_id = LINUX_MACHTYPE_8660_QT;
else if (hw_platform == HW_PLATFORM_DRAGON)
mach_id = LINUX_MACHTYPE_8x60_DRAGON;
}
} else if (format == 5) {
switch (fused_chip) {
case UNKNOWN:
if (hw_platform == HW_PLATFORM_SURF)
mach_id = LINUX_MACHTYPE_8660_SURF;
else if (hw_platform == HW_PLATFORM_FFA)
mach_id = LINUX_MACHTYPE_8660_FFA;
else if (hw_platform == HW_PLATFORM_FLUID)
mach_id = LINUX_MACHTYPE_8660_FLUID;
else if (hw_platform == HW_PLATFORM_QT)
mach_id = LINUX_MACHTYPE_8660_QT;
else if (hw_platform == HW_PLATFORM_DRAGON)
mach_id = LINUX_MACHTYPE_8x60_DRAGON;
break;
case MDM9200:
case MDM9600:
if (hw_platform == HW_PLATFORM_SURF)
mach_id = LINUX_MACHTYPE_8660_CHARM_SURF;
else if (hw_platform == HW_PLATFORM_FFA)
mach_id = LINUX_MACHTYPE_8660_CHARM_FFA;
break;
default:
mach_id = LINUX_MACHTYPE_8660_FFA;
}
}
return mach_id;
}
void shutdown_device()
{
gpio_config_pshold();
pm8058_reset_pwr_off(0);
pm8901_reset_pwr_off(0);
writel(0, MSM_PSHOLD_CTL_SU);
mdelay(10000);
dprintf(CRITICAL, "Shutdown failed\n");
}
void reboot_device(unsigned reboot_reason)
{
/* Reset WDG0 counter */
writel(1, MSM_WDT0_RST);
/* Disable WDG0 */
writel(0, MSM_WDT0_EN);
/* Set WDG0 bark time */
writel(0x31F3, MSM_WDT0_BT);
/* Enable WDG0 */
writel(3, MSM_WDT0_EN);
dmb();
/* Enable WDG output */
secure_writel(3, MSM_TCSR_BASE + TCSR_WDOG_CFG);
mdelay(10000);
dprintf(CRITICAL, "Rebooting failed\n");
return;
}
unsigned check_reboot_mode(void)
{
unsigned restart_reason = 0;
void *restart_reason_addr = (void *)0x2A05F65C;
/* Read reboot reason and scrub it */
restart_reason = readl(restart_reason_addr);
writel(0x00, restart_reason_addr);
return restart_reason;
}
void target_battery_charging_enable(unsigned enable, unsigned disconnect)
{
}
void setup_fpga()
{
writel(0x147, GPIO_CFG133_ADDR);
writel(0x144, GPIO_CFG135_ADDR);
writel(0x144, GPIO_CFG136_ADDR);
writel(0x144, GPIO_CFG137_ADDR);
writel(0x144, GPIO_CFG138_ADDR);
writel(0x144, GPIO_CFG139_ADDR);
writel(0x144, GPIO_CFG140_ADDR);
writel(0x144, GPIO_CFG141_ADDR);
writel(0x144, GPIO_CFG142_ADDR);
writel(0x144, GPIO_CFG143_ADDR);
writel(0x144, GPIO_CFG144_ADDR);
writel(0x144, GPIO_CFG145_ADDR);
writel(0x144, GPIO_CFG146_ADDR);
writel(0x144, GPIO_CFG147_ADDR);
writel(0x144, GPIO_CFG148_ADDR);
writel(0x144, GPIO_CFG149_ADDR);
writel(0x144, GPIO_CFG150_ADDR);
writel(0x147, GPIO_CFG151_ADDR);
writel(0x147, GPIO_CFG152_ADDR);
writel(0x147, GPIO_CFG153_ADDR);
writel(0x3, GPIO_CFG154_ADDR);
writel(0x147, GPIO_CFG155_ADDR);
writel(0x147, GPIO_CFG156_ADDR);
writel(0x147, GPIO_CFG157_ADDR);
writel(0x3, GPIO_CFG158_ADDR);
writel(0x00000B31, EBI2_CHIP_SELECT_CFG0);
writel(0xA3030020, EBI2_XMEM_CS3_CFG1);
}
void debug_led_write(char val)
{
writeb(val, SURF_DEBUG_LED_ADDR);
}
char debug_led_read()
{
return readb(SURF_DEBUG_LED_ADDR);
}
unsigned target_baseband()
{
struct smem_board_info_v5 board_info_v5;
struct smem_board_info_v6 board_info_v6;
unsigned int board_info_len = 0;
unsigned smem_status = 0;
unsigned format = 0;
unsigned baseband = BASEBAND_MSM;
smem_status = smem_read_alloc_entry_offset(SMEM_BOARD_INFO_LOCATION,
&format, sizeof(format), 0);
if (!smem_status) {
if (format == 5) {
board_info_len = sizeof(board_info_v5);
smem_status =
smem_read_alloc_entry(SMEM_BOARD_INFO_LOCATION,
&board_info_v5,
board_info_len);
if (!smem_status) {
/* Check for LTE fused targets or APQ. Default to MSM */
if (board_info_v5.fused_chip == MDM9200)
baseband = BASEBAND_CSFB;
else if (board_info_v5.fused_chip == MDM9600)
baseband = BASEBAND_SVLTE2A;
else if (board_info_v5.board_info_v3.msm_id ==
APQ8060)
baseband = BASEBAND_APQ;
else
baseband = BASEBAND_MSM;
}
} else if (format >= 6) {
board_info_len = sizeof(board_info_v6);
smem_status =
smem_read_alloc_entry(SMEM_BOARD_INFO_LOCATION,
&board_info_v6,
board_info_len);
if (!smem_status) {
/* Check for LTE fused targets or APQ. Default to MSM */
if (board_info_v6.platform_subtype ==
HW_PLATFORM_SUBTYPE_CSFB)
baseband = BASEBAND_CSFB;
else if (board_info_v6.platform_subtype ==
HW_PLATFORM_SUBTYPE_SVLTE2A)
baseband = BASEBAND_SVLTE2A;
else if (board_info_v6.board_info_v3.msm_id ==
APQ8060)
baseband = BASEBAND_APQ;
else
baseband = BASEBAND_MSM;
}
}
}
return baseband;
}
crypto_engine_type board_ce_type(void)
{
struct smem_board_info_v5 board_info_v5;
struct smem_board_info_v6 board_info_v6;
unsigned int board_info_len = 0;
unsigned smem_status = 0;
unsigned format = 0;
smem_status = smem_read_alloc_entry_offset(SMEM_BOARD_INFO_LOCATION,
&format, sizeof(format), 0);
if (!smem_status) {
if (format == 5) {
board_info_len = sizeof(board_info_v5);
smem_status = smem_read_alloc_entry(SMEM_BOARD_INFO_LOCATION,
&board_info_v5,
board_info_len);
if (!smem_status) {
if ((board_info_v5.board_info_v3.msm_id == APQ8060) ||
(board_info_v5.board_info_v3.msm_id == MSM8660) ||
(board_info_v5.board_info_v3.msm_id == MSM8260))
platform_ce_type = CRYPTO_ENGINE_TYPE_HW;
}
} else if (format >= 6) {
board_info_len = sizeof(board_info_v6);
smem_status = smem_read_alloc_entry(SMEM_BOARD_INFO_LOCATION,
&board_info_v6,
board_info_len);
if(!smem_status) {
if ((board_info_v6.board_info_v3.msm_id == APQ8060) ||
(board_info_v6.board_info_v3.msm_id == MSM8660) ||
(board_info_v6.board_info_v3.msm_id == MSM8260))
platform_ce_type = CRYPTO_ENGINE_TYPE_HW;
}
}
}
return platform_ce_type;
}
static unsigned target_check_power_on_reason(void)
{
unsigned power_on_status = 0;
unsigned int status_len = sizeof(power_on_status);
unsigned smem_status;
smem_status = smem_read_alloc_entry(SMEM_POWER_ON_STATUS_INFO,
&power_on_status, status_len);
if (smem_status) {
dprintf(CRITICAL,
"ERROR: unable to read shared memory for power on reason\n");
}
dprintf(INFO, "Power on reason %u\n", power_on_status);
return power_on_status;
}
static void target_shutdown_for_rtc_alarm(void)
{
if (target_check_power_on_reason() == PWR_ON_EVENT_RTC_ALARM) {
dprintf(CRITICAL,
"Power on due to RTC alarm. Going to shutdown!!\n");
pm8058_rtc0_alarm_irq_disable();
shutdown_device();
}
}
unsigned target_pause_for_battery_charge(void)
{
if (target_check_power_on_reason() == PWR_ON_EVENT_WALL_CHG)
return 1;
return 0;
}
void target_serialno(unsigned char *buf)
{
unsigned int serialno;
if (target_is_emmc_boot()) {
serialno = mmc_get_psn();
snprintf((char *)buf, 13, "%x", serialno);
}
}
void hsusb_gpio_init(void)
{
uint32_t func;
uint32_t pull;
uint32_t dir;
uint32_t enable;
uint32_t drv;
/* GPIO 131 and 132 need to be configured for connecting to USB HS PHY */
func = 0;
enable = 1;
pull = GPIO_NO_PULL;
dir = 2;
drv = GPIO_2MA;
gpio_tlmm_config(131, func, dir, pull, drv, enable);
gpio_set(131, dir);
func = 0;
enable = 1;
pull = GPIO_NO_PULL;
dir = 1;
drv = GPIO_2MA;
gpio_tlmm_config(132, func, dir, pull, drv, enable);
gpio_set(132, dir);
return;
}
#define USB_CLK 0x00902910
#define USB_PHY_CLK 0x00902E20
#define CLK_RESET_ASSERT 0x1
#define CLK_RESET_DEASSERT 0x0
#define CLK_RESET(x,y) writel((y), (x));
static int msm_otg_xceiv_reset()
{
CLK_RESET(USB_CLK, CLK_RESET_ASSERT);
CLK_RESET(USB_PHY_CLK, CLK_RESET_ASSERT);
mdelay(20);
CLK_RESET(USB_PHY_CLK, CLK_RESET_DEASSERT);
CLK_RESET(USB_CLK, CLK_RESET_DEASSERT);
mdelay(20);
return 0;
}
static void target_ulpi_init(void)
{
unsigned int reg;
reg = ulpi_read(0x32);
dprintf(INFO, " Value of ulpi read 0x32 is %08x\n", reg);
ulpi_write(0x30, 0x32);
reg = ulpi_read(0x32);
dprintf(INFO, " Value of ulpi read 0x32 after write is %08x\n", reg);
reg = ulpi_read(0x36);
dprintf(INFO, " Value of ulpi read 0x36 is %08x\n", reg);
ulpi_write(reg | 0x2, 0x36);
reg = ulpi_read(0x36);
dprintf(INFO, " Value of ulpi read 0x36 aafter write is %08x\n", reg);
}
/* Do target specific usb initialization */
void target_usb_init(void)
{
hsusb_gpio_init();
msm_otg_xceiv_reset();
target_ulpi_init();
}
void target_usb_stop(void)
{
int val;
/* Voting down PLL8 */
val = readl(0x009034C0);
val &= ~(1 << 8);
writel(val, 0x009034C0);
}
uint8_t target_uart_gsbi(void)
{
return uart_gsbi_id;
}
int emmc_recovery_init(void)
{
int rc;
rc = _emmc_recovery_init();
return rc;
}