M7350/kernel/drivers/w1/masters/ds2490.c

1010 lines
23 KiB
C
Raw Normal View History

2024-09-09 08:52:07 +00:00
/*
* dscore.c
*
* Copyright (c) 2004 Evgeniy Polyakov <zbr@ioremap.net>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/mod_devicetable.h>
#include <linux/usb.h>
#include <linux/slab.h>
#include "../w1_int.h"
#include "../w1.h"
/* COMMAND TYPE CODES */
#define CONTROL_CMD 0x00
#define COMM_CMD 0x01
#define MODE_CMD 0x02
/* CONTROL COMMAND CODES */
#define CTL_RESET_DEVICE 0x0000
#define CTL_START_EXE 0x0001
#define CTL_RESUME_EXE 0x0002
#define CTL_HALT_EXE_IDLE 0x0003
#define CTL_HALT_EXE_DONE 0x0004
#define CTL_FLUSH_COMM_CMDS 0x0007
#define CTL_FLUSH_RCV_BUFFER 0x0008
#define CTL_FLUSH_XMT_BUFFER 0x0009
#define CTL_GET_COMM_CMDS 0x000A
/* MODE COMMAND CODES */
#define MOD_PULSE_EN 0x0000
#define MOD_SPEED_CHANGE_EN 0x0001
#define MOD_1WIRE_SPEED 0x0002
#define MOD_STRONG_PU_DURATION 0x0003
#define MOD_PULLDOWN_SLEWRATE 0x0004
#define MOD_PROG_PULSE_DURATION 0x0005
#define MOD_WRITE1_LOWTIME 0x0006
#define MOD_DSOW0_TREC 0x0007
/* COMMUNICATION COMMAND CODES */
#define COMM_ERROR_ESCAPE 0x0601
#define COMM_SET_DURATION 0x0012
#define COMM_BIT_IO 0x0020
#define COMM_PULSE 0x0030
#define COMM_1_WIRE_RESET 0x0042
#define COMM_BYTE_IO 0x0052
#define COMM_MATCH_ACCESS 0x0064
#define COMM_BLOCK_IO 0x0074
#define COMM_READ_STRAIGHT 0x0080
#define COMM_DO_RELEASE 0x6092
#define COMM_SET_PATH 0x00A2
#define COMM_WRITE_SRAM_PAGE 0x00B2
#define COMM_WRITE_EPROM 0x00C4
#define COMM_READ_CRC_PROT_PAGE 0x00D4
#define COMM_READ_REDIRECT_PAGE_CRC 0x21E4
#define COMM_SEARCH_ACCESS 0x00F4
/* Communication command bits */
#define COMM_TYPE 0x0008
#define COMM_SE 0x0008
#define COMM_D 0x0008
#define COMM_Z 0x0008
#define COMM_CH 0x0008
#define COMM_SM 0x0008
#define COMM_R 0x0008
#define COMM_IM 0x0001
#define COMM_PS 0x4000
#define COMM_PST 0x4000
#define COMM_CIB 0x4000
#define COMM_RTS 0x4000
#define COMM_DT 0x2000
#define COMM_SPU 0x1000
#define COMM_F 0x0800
#define COMM_NTF 0x0400
#define COMM_ICP 0x0200
#define COMM_RST 0x0100
#define PULSE_PROG 0x01
#define PULSE_SPUE 0x02
#define BRANCH_MAIN 0xCC
#define BRANCH_AUX 0x33
/* Status flags */
#define ST_SPUA 0x01 /* Strong Pull-up is active */
#define ST_PRGA 0x02 /* 12V programming pulse is being generated */
#define ST_12VP 0x04 /* external 12V programming voltage is present */
#define ST_PMOD 0x08 /* DS2490 powered from USB and external sources */
#define ST_HALT 0x10 /* DS2490 is currently halted */
#define ST_IDLE 0x20 /* DS2490 is currently idle */
#define ST_EPOF 0x80
/* Result Register flags */
#define RR_DETECT 0xA5 /* New device detected */
#define RR_NRS 0x01 /* Reset no presence or ... */
#define RR_SH 0x02 /* short on reset or set path */
#define RR_APP 0x04 /* alarming presence on reset */
#define RR_VPP 0x08 /* 12V expected not seen */
#define RR_CMP 0x10 /* compare error */
#define RR_CRC 0x20 /* CRC error detected */
#define RR_RDP 0x40 /* redirected page */
#define RR_EOS 0x80 /* end of search error */
#define SPEED_NORMAL 0x00
#define SPEED_FLEXIBLE 0x01
#define SPEED_OVERDRIVE 0x02
#define NUM_EP 4
#define EP_CONTROL 0
#define EP_STATUS 1
#define EP_DATA_OUT 2
#define EP_DATA_IN 3
struct ds_device
{
struct list_head ds_entry;
struct usb_device *udev;
struct usb_interface *intf;
int ep[NUM_EP];
/* Strong PullUp
* 0: pullup not active, else duration in milliseconds
*/
int spu_sleep;
/* spu_bit contains COMM_SPU or 0 depending on if the strong pullup
* should be active or not for writes.
*/
u16 spu_bit;
struct w1_bus_master master;
};
struct ds_status
{
u8 enable;
u8 speed;
u8 pullup_dur;
u8 ppuls_dur;
u8 pulldown_slew;
u8 write1_time;
u8 write0_time;
u8 reserved0;
u8 status;
u8 command0;
u8 command1;
u8 command_buffer_status;
u8 data_out_buffer_status;
u8 data_in_buffer_status;
u8 reserved1;
u8 reserved2;
};
static struct usb_device_id ds_id_table [] = {
{ USB_DEVICE(0x04fa, 0x2490) },
{ },
};
MODULE_DEVICE_TABLE(usb, ds_id_table);
static int ds_probe(struct usb_interface *, const struct usb_device_id *);
static void ds_disconnect(struct usb_interface *);
static int ds_send_control(struct ds_device *, u16, u16);
static int ds_send_control_cmd(struct ds_device *, u16, u16);
static LIST_HEAD(ds_devices);
static DEFINE_MUTEX(ds_mutex);
static struct usb_driver ds_driver = {
.name = "DS9490R",
.probe = ds_probe,
.disconnect = ds_disconnect,
.id_table = ds_id_table,
};
static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
{
int err;
err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
CONTROL_CMD, 0x40, value, index, NULL, 0, 1000);
if (err < 0) {
printk(KERN_ERR "Failed to send command control message %x.%x: err=%d.\n",
value, index, err);
return err;
}
return err;
}
static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
{
int err;
err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
MODE_CMD, 0x40, value, index, NULL, 0, 1000);
if (err < 0) {
printk(KERN_ERR "Failed to send mode control message %x.%x: err=%d.\n",
value, index, err);
return err;
}
return err;
}
static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
{
int err;
err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
COMM_CMD, 0x40, value, index, NULL, 0, 1000);
if (err < 0) {
printk(KERN_ERR "Failed to send control message %x.%x: err=%d.\n",
value, index, err);
return err;
}
return err;
}
static int ds_recv_status_nodump(struct ds_device *dev, struct ds_status *st,
unsigned char *buf, int size)
{
int count, err;
memset(st, 0, sizeof(*st));
count = 0;
err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_STATUS]), buf, size, &count, 100);
if (err < 0) {
printk(KERN_ERR "Failed to read 1-wire data from 0x%x: err=%d.\n", dev->ep[EP_STATUS], err);
return err;
}
if (count >= sizeof(*st))
memcpy(st, buf, sizeof(*st));
return count;
}
static inline void ds_print_msg(unsigned char *buf, unsigned char *str, int off)
{
printk(KERN_INFO "%45s: %8x\n", str, buf[off]);
}
static void ds_dump_status(struct ds_device *dev, unsigned char *buf, int count)
{
int i;
printk(KERN_INFO "0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
for (i=0; i<count; ++i)
printk("%02x ", buf[i]);
printk(KERN_INFO "\n");
if (count >= 16) {
ds_print_msg(buf, "enable flag", 0);
ds_print_msg(buf, "1-wire speed", 1);
ds_print_msg(buf, "strong pullup duration", 2);
ds_print_msg(buf, "programming pulse duration", 3);
ds_print_msg(buf, "pulldown slew rate control", 4);
ds_print_msg(buf, "write-1 low time", 5);
ds_print_msg(buf, "data sample offset/write-0 recovery time",
6);
ds_print_msg(buf, "reserved (test register)", 7);
ds_print_msg(buf, "device status flags", 8);
ds_print_msg(buf, "communication command byte 1", 9);
ds_print_msg(buf, "communication command byte 2", 10);
ds_print_msg(buf, "communication command buffer status", 11);
ds_print_msg(buf, "1-wire data output buffer status", 12);
ds_print_msg(buf, "1-wire data input buffer status", 13);
ds_print_msg(buf, "reserved", 14);
ds_print_msg(buf, "reserved", 15);
}
for (i = 16; i < count; ++i) {
if (buf[i] == RR_DETECT) {
ds_print_msg(buf, "new device detect", i);
continue;
}
ds_print_msg(buf, "Result Register Value: ", i);
if (buf[i] & RR_NRS)
printk(KERN_INFO "NRS: Reset no presence or ...\n");
if (buf[i] & RR_SH)
printk(KERN_INFO "SH: short on reset or set path\n");
if (buf[i] & RR_APP)
printk(KERN_INFO "APP: alarming presence on reset\n");
if (buf[i] & RR_VPP)
printk(KERN_INFO "VPP: 12V expected not seen\n");
if (buf[i] & RR_CMP)
printk(KERN_INFO "CMP: compare error\n");
if (buf[i] & RR_CRC)
printk(KERN_INFO "CRC: CRC error detected\n");
if (buf[i] & RR_RDP)
printk(KERN_INFO "RDP: redirected page\n");
if (buf[i] & RR_EOS)
printk(KERN_INFO "EOS: end of search error\n");
}
}
static void ds_reset_device(struct ds_device *dev)
{
ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
/* Always allow strong pullup which allow individual writes to use
* the strong pullup.
*/
if (ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE))
printk(KERN_ERR "ds_reset_device: "
"Error allowing strong pullup\n");
/* Chip strong pullup time was cleared. */
if (dev->spu_sleep) {
/* lower 4 bits are 0, see ds_set_pullup */
u8 del = dev->spu_sleep>>4;
if (ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del))
printk(KERN_ERR "ds_reset_device: "
"Error setting duration\n");
}
}
static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
{
int count, err;
struct ds_status st;
/* Careful on size. If size is less than what is available in
* the input buffer, the device fails the bulk transfer and
* clears the input buffer. It could read the maximum size of
* the data buffer, but then do you return the first, last, or
* some set of the middle size bytes? As long as the rest of
* the code is correct there will be size bytes waiting. A
* call to ds_wait_status will wait until the device is idle
* and any data to be received would have been available.
*/
count = 0;
err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
buf, size, &count, 1000);
if (err < 0) {
u8 buf[0x20];
int count;
printk(KERN_INFO "Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
count = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
ds_dump_status(dev, buf, count);
return err;
}
#if 0
{
int i;
printk("%s: count=%d: ", __func__, count);
for (i=0; i<count; ++i)
printk("%02x ", buf[i]);
printk("\n");
}
#endif
return count;
}
static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
{
int count, err;
count = 0;
err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
if (err < 0) {
printk(KERN_ERR "Failed to write 1-wire data to ep0x%x: "
"err=%d.\n", dev->ep[EP_DATA_OUT], err);
return err;
}
return err;
}
#if 0
int ds_stop_pulse(struct ds_device *dev, int limit)
{
struct ds_status st;
int count = 0, err = 0;
u8 buf[0x20];
do {
err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
if (err)
break;
err = ds_send_control(dev, CTL_RESUME_EXE, 0);
if (err)
break;
err = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
if (err)
break;
if ((st.status & ST_SPUA) == 0) {
err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
if (err)
break;
}
} while(++count < limit);
return err;
}
int ds_detect(struct ds_device *dev, struct ds_status *st)
{
int err;
err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
if (err)
return err;
err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
if (err)
return err;
err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
if (err)
return err;
err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
if (err)
return err;
err = ds_dump_status(dev, st);
return err;
}
#endif /* 0 */
static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
{
u8 buf[0x20];
int err, count = 0;
do {
err = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
#if 0
if (err >= 0) {
int i;
printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
for (i=0; i<err; ++i)
printk("%02x ", buf[i]);
printk("\n");
}
#endif
} while (!(buf[0x08] & ST_IDLE) && !(err < 0) && ++count < 100);
if (err >= 16 && st->status & ST_EPOF) {
printk(KERN_INFO "Resetting device after ST_EPOF.\n");
ds_reset_device(dev);
/* Always dump the device status. */
count = 101;
}
/* Dump the status for errors or if there is extended return data.
* The extended status includes new device detection (maybe someone
* can do something with it).
*/
if (err > 16 || count >= 100 || err < 0)
ds_dump_status(dev, buf, err);
/* Extended data isn't an error. Well, a short is, but the dump
* would have already told the user that and we can't do anything
* about it in software anyway.
*/
if (count >= 100 || err < 0)
return -1;
else
return 0;
}
static int ds_reset(struct ds_device *dev)
{
int err;
/* Other potentionally interesting flags for reset.
*
* COMM_NTF: Return result register feedback. This could be used to
* detect some conditions such as short, alarming presence, or
* detect if a new device was detected.
*
* COMM_SE which allows SPEED_NORMAL, SPEED_FLEXIBLE, SPEED_OVERDRIVE:
* Select the data transfer rate.
*/
err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_IM, SPEED_NORMAL);
if (err)
return err;
return 0;
}
#if 0
static int ds_set_speed(struct ds_device *dev, int speed)
{
int err;
if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
return -EINVAL;
if (speed != SPEED_OVERDRIVE)
speed = SPEED_FLEXIBLE;
speed &= 0xff;
err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
if (err)
return err;
return err;
}
#endif /* 0 */
static int ds_set_pullup(struct ds_device *dev, int delay)
{
int err = 0;
u8 del = 1 + (u8)(delay >> 4);
/* Just storing delay would not get the trunication and roundup. */
int ms = del<<4;
/* Enable spu_bit if a delay is set. */
dev->spu_bit = delay ? COMM_SPU : 0;
/* If delay is zero, it has already been disabled, if the time is
* the same as the hardware was last programmed to, there is also
* nothing more to do. Compare with the recalculated value ms
* rather than del or delay which can have a different value.
*/
if (delay == 0 || ms == dev->spu_sleep)
return err;
err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
if (err)
return err;
dev->spu_sleep = ms;
return err;
}
static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
{
int err;
struct ds_status st;
err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0),
0);
if (err)
return err;
ds_wait_status(dev, &st);
err = ds_recv_data(dev, tbit, sizeof(*tbit));
if (err < 0)
return err;
return 0;
}
#if 0
static int ds_write_bit(struct ds_device *dev, u8 bit)
{
int err;
struct ds_status st;
/* Set COMM_ICP to write without a readback. Note, this will
* produce one time slot, a down followed by an up with COMM_D
* only determing the timing.
*/
err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP |
(bit ? COMM_D : 0), 0);
if (err)
return err;
ds_wait_status(dev, &st);
return 0;
}
#endif
static int ds_write_byte(struct ds_device *dev, u8 byte)
{
int err;
struct ds_status st;
u8 rbyte;
err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | dev->spu_bit, byte);
if (err)
return err;
if (dev->spu_bit)
msleep(dev->spu_sleep);
err = ds_wait_status(dev, &st);
if (err)
return err;
err = ds_recv_data(dev, &rbyte, sizeof(rbyte));
if (err < 0)
return err;
return !(byte == rbyte);
}
static int ds_read_byte(struct ds_device *dev, u8 *byte)
{
int err;
struct ds_status st;
err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff);
if (err)
return err;
ds_wait_status(dev, &st);
err = ds_recv_data(dev, byte, sizeof(*byte));
if (err < 0)
return err;
return 0;
}
static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
{
struct ds_status st;
int err;
if (len > 64*1024)
return -E2BIG;
memset(buf, 0xFF, len);
err = ds_send_data(dev, buf, len);
if (err < 0)
return err;
err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len);
if (err)
return err;
ds_wait_status(dev, &st);
memset(buf, 0x00, len);
err = ds_recv_data(dev, buf, len);
return err;
}
static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
{
int err;
struct ds_status st;
err = ds_send_data(dev, buf, len);
if (err < 0)
return err;
err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | dev->spu_bit, len);
if (err)
return err;
if (dev->spu_bit)
msleep(dev->spu_sleep);
ds_wait_status(dev, &st);
err = ds_recv_data(dev, buf, len);
if (err < 0)
return err;
return !(err == len);
}
#if 0
static int ds_search(struct ds_device *dev, u64 init, u64 *buf, u8 id_number, int conditional_search)
{
int err;
u16 value, index;
struct ds_status st;
memset(buf, 0, sizeof(buf));
err = ds_send_data(ds_dev, (unsigned char *)&init, 8);
if (err)
return err;
ds_wait_status(ds_dev, &st);
value = COMM_SEARCH_ACCESS | COMM_IM | COMM_SM | COMM_F | COMM_RTS;
index = (conditional_search ? 0xEC : 0xF0) | (id_number << 8);
err = ds_send_control(ds_dev, value, index);
if (err)
return err;
ds_wait_status(ds_dev, &st);
err = ds_recv_data(ds_dev, (unsigned char *)buf, 8*id_number);
if (err < 0)
return err;
return err/8;
}
static int ds_match_access(struct ds_device *dev, u64 init)
{
int err;
struct ds_status st;
err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
if (err)
return err;
ds_wait_status(dev, &st);
err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
if (err)
return err;
ds_wait_status(dev, &st);
return 0;
}
static int ds_set_path(struct ds_device *dev, u64 init)
{
int err;
struct ds_status st;
u8 buf[9];
memcpy(buf, &init, 8);
buf[8] = BRANCH_MAIN;
err = ds_send_data(dev, buf, sizeof(buf));
if (err)
return err;
ds_wait_status(dev, &st);
err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
if (err)
return err;
ds_wait_status(dev, &st);
return 0;
}
#endif /* 0 */
static u8 ds9490r_touch_bit(void *data, u8 bit)
{
u8 ret;
struct ds_device *dev = data;
if (ds_touch_bit(dev, bit, &ret))
return 0;
return ret;
}
#if 0
static void ds9490r_write_bit(void *data, u8 bit)
{
struct ds_device *dev = data;
ds_write_bit(dev, bit);
}
static u8 ds9490r_read_bit(void *data)
{
struct ds_device *dev = data;
int err;
u8 bit = 0;
err = ds_touch_bit(dev, 1, &bit);
if (err)
return 0;
return bit & 1;
}
#endif
static void ds9490r_write_byte(void *data, u8 byte)
{
struct ds_device *dev = data;
ds_write_byte(dev, byte);
}
static u8 ds9490r_read_byte(void *data)
{
struct ds_device *dev = data;
int err;
u8 byte = 0;
err = ds_read_byte(dev, &byte);
if (err)
return 0;
return byte;
}
static void ds9490r_write_block(void *data, const u8 *buf, int len)
{
struct ds_device *dev = data;
ds_write_block(dev, (u8 *)buf, len);
}
static u8 ds9490r_read_block(void *data, u8 *buf, int len)
{
struct ds_device *dev = data;
int err;
err = ds_read_block(dev, buf, len);
if (err < 0)
return 0;
return len;
}
static u8 ds9490r_reset(void *data)
{
struct ds_device *dev = data;
int err;
err = ds_reset(dev);
if (err)
return 1;
return 0;
}
static u8 ds9490r_set_pullup(void *data, int delay)
{
struct ds_device *dev = data;
if (ds_set_pullup(dev, delay))
return 1;
return 0;
}
static int ds_w1_init(struct ds_device *dev)
{
memset(&dev->master, 0, sizeof(struct w1_bus_master));
/* Reset the device as it can be in a bad state.
* This is necessary because a block write will wait for data
* to be placed in the output buffer and block any later
* commands which will keep accumulating and the device will
* not be idle. Another case is removing the ds2490 module
* while a bus search is in progress, somehow a few commands
* get through, but the input transfers fail leaving data in
* the input buffer. This will cause the next read to fail
* see the note in ds_recv_data.
*/
ds_reset_device(dev);
dev->master.data = dev;
dev->master.touch_bit = &ds9490r_touch_bit;
/* read_bit and write_bit in w1_bus_master are expected to set and
* sample the line level. For write_bit that means it is expected to
* set it to that value and leave it there. ds2490 only supports an
* individual time slot at the lowest level. The requirement from
* pulling the bus state down to reading the state is 15us, something
* that isn't realistic on the USB bus anyway.
dev->master.read_bit = &ds9490r_read_bit;
dev->master.write_bit = &ds9490r_write_bit;
*/
dev->master.read_byte = &ds9490r_read_byte;
dev->master.write_byte = &ds9490r_write_byte;
dev->master.read_block = &ds9490r_read_block;
dev->master.write_block = &ds9490r_write_block;
dev->master.reset_bus = &ds9490r_reset;
dev->master.set_pullup = &ds9490r_set_pullup;
return w1_add_master_device(&dev->master);
}
static void ds_w1_fini(struct ds_device *dev)
{
w1_remove_master_device(&dev->master);
}
static int ds_probe(struct usb_interface *intf,
const struct usb_device_id *udev_id)
{
struct usb_device *udev = interface_to_usbdev(intf);
struct usb_endpoint_descriptor *endpoint;
struct usb_host_interface *iface_desc;
struct ds_device *dev;
int i, err;
dev = kmalloc(sizeof(struct ds_device), GFP_KERNEL);
if (!dev) {
printk(KERN_INFO "Failed to allocate new DS9490R structure.\n");
return -ENOMEM;
}
dev->spu_sleep = 0;
dev->spu_bit = 0;
dev->udev = usb_get_dev(udev);
if (!dev->udev) {
err = -ENOMEM;
goto err_out_free;
}
memset(dev->ep, 0, sizeof(dev->ep));
usb_set_intfdata(intf, dev);
err = usb_set_interface(dev->udev, intf->altsetting[0].desc.bInterfaceNumber, 3);
if (err) {
printk(KERN_ERR "Failed to set alternative setting 3 for %d interface: err=%d.\n",
intf->altsetting[0].desc.bInterfaceNumber, err);
goto err_out_clear;
}
err = usb_reset_configuration(dev->udev);
if (err) {
printk(KERN_ERR "Failed to reset configuration: err=%d.\n", err);
goto err_out_clear;
}
iface_desc = &intf->altsetting[0];
if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
printk(KERN_INFO "Num endpoints=%d. It is not DS9490R.\n", iface_desc->desc.bNumEndpoints);
err = -EINVAL;
goto err_out_clear;
}
/*
* This loop doesn'd show control 0 endpoint,
* so we will fill only 1-3 endpoints entry.
*/
for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
endpoint = &iface_desc->endpoint[i].desc;
dev->ep[i+1] = endpoint->bEndpointAddress;
#if 0
printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
(endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
#endif
}
err = ds_w1_init(dev);
if (err)
goto err_out_clear;
mutex_lock(&ds_mutex);
list_add_tail(&dev->ds_entry, &ds_devices);
mutex_unlock(&ds_mutex);
return 0;
err_out_clear:
usb_set_intfdata(intf, NULL);
usb_put_dev(dev->udev);
err_out_free:
kfree(dev);
return err;
}
static void ds_disconnect(struct usb_interface *intf)
{
struct ds_device *dev;
dev = usb_get_intfdata(intf);
if (!dev)
return;
mutex_lock(&ds_mutex);
list_del(&dev->ds_entry);
mutex_unlock(&ds_mutex);
ds_w1_fini(dev);
usb_set_intfdata(intf, NULL);
usb_put_dev(dev->udev);
kfree(dev);
}
module_usb_driver(ds_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Evgeniy Polyakov <zbr@ioremap.net>");
MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");