M7350/kernel/drivers/net/wireless/brcm80211/brcmfmac/wl_cfg80211.c

3880 lines
98 KiB
C
Raw Normal View History

2024-09-09 08:52:07 +00:00
/*
* Copyright (c) 2010 Broadcom Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* Toplevel file. Relies on dhd_linux.c to send commands to the dongle. */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/if_arp.h>
#include <linux/sched.h>
#include <linux/kthread.h>
#include <linux/netdevice.h>
#include <linux/bitops.h>
#include <linux/etherdevice.h>
#include <linux/ieee80211.h>
#include <linux/uaccess.h>
#include <net/cfg80211.h>
#include <brcmu_utils.h>
#include <defs.h>
#include <brcmu_wifi.h>
#include "dhd.h"
#include "wl_cfg80211.h"
#define BRCMF_ASSOC_PARAMS_FIXED_SIZE \
(sizeof(struct brcmf_assoc_params_le) - sizeof(u16))
static const u8 ether_bcast[ETH_ALEN] = {255, 255, 255, 255, 255, 255};
static u32 brcmf_dbg_level = WL_DBG_ERR;
static void brcmf_set_drvdata(struct brcmf_cfg80211_dev *dev, void *data)
{
dev->driver_data = data;
}
static void *brcmf_get_drvdata(struct brcmf_cfg80211_dev *dev)
{
void *data = NULL;
if (dev)
data = dev->driver_data;
return data;
}
static
struct brcmf_cfg80211_priv *brcmf_priv_get(struct brcmf_cfg80211_dev *cfg_dev)
{
struct brcmf_cfg80211_iface *ci = brcmf_get_drvdata(cfg_dev);
return ci->cfg_priv;
}
static bool check_sys_up(struct wiphy *wiphy)
{
struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy);
if (!test_bit(WL_STATUS_READY, &cfg_priv->status)) {
WL_INFO("device is not ready : status (%d)\n",
(int)cfg_priv->status);
return false;
}
return true;
}
#define CHAN2G(_channel, _freq, _flags) { \
.band = IEEE80211_BAND_2GHZ, \
.center_freq = (_freq), \
.hw_value = (_channel), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
#define CHAN5G(_channel, _flags) { \
.band = IEEE80211_BAND_5GHZ, \
.center_freq = 5000 + (5 * (_channel)), \
.hw_value = (_channel), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
#define RATE_TO_BASE100KBPS(rate) (((rate) * 10) / 2)
#define RATETAB_ENT(_rateid, _flags) \
{ \
.bitrate = RATE_TO_BASE100KBPS(_rateid), \
.hw_value = (_rateid), \
.flags = (_flags), \
}
static struct ieee80211_rate __wl_rates[] = {
RATETAB_ENT(BRCM_RATE_1M, 0),
RATETAB_ENT(BRCM_RATE_2M, IEEE80211_RATE_SHORT_PREAMBLE),
RATETAB_ENT(BRCM_RATE_5M5, IEEE80211_RATE_SHORT_PREAMBLE),
RATETAB_ENT(BRCM_RATE_11M, IEEE80211_RATE_SHORT_PREAMBLE),
RATETAB_ENT(BRCM_RATE_6M, 0),
RATETAB_ENT(BRCM_RATE_9M, 0),
RATETAB_ENT(BRCM_RATE_12M, 0),
RATETAB_ENT(BRCM_RATE_18M, 0),
RATETAB_ENT(BRCM_RATE_24M, 0),
RATETAB_ENT(BRCM_RATE_36M, 0),
RATETAB_ENT(BRCM_RATE_48M, 0),
RATETAB_ENT(BRCM_RATE_54M, 0),
};
#define wl_a_rates (__wl_rates + 4)
#define wl_a_rates_size 8
#define wl_g_rates (__wl_rates + 0)
#define wl_g_rates_size 12
static struct ieee80211_channel __wl_2ghz_channels[] = {
CHAN2G(1, 2412, 0),
CHAN2G(2, 2417, 0),
CHAN2G(3, 2422, 0),
CHAN2G(4, 2427, 0),
CHAN2G(5, 2432, 0),
CHAN2G(6, 2437, 0),
CHAN2G(7, 2442, 0),
CHAN2G(8, 2447, 0),
CHAN2G(9, 2452, 0),
CHAN2G(10, 2457, 0),
CHAN2G(11, 2462, 0),
CHAN2G(12, 2467, 0),
CHAN2G(13, 2472, 0),
CHAN2G(14, 2484, 0),
};
static struct ieee80211_channel __wl_5ghz_a_channels[] = {
CHAN5G(34, 0), CHAN5G(36, 0),
CHAN5G(38, 0), CHAN5G(40, 0),
CHAN5G(42, 0), CHAN5G(44, 0),
CHAN5G(46, 0), CHAN5G(48, 0),
CHAN5G(52, 0), CHAN5G(56, 0),
CHAN5G(60, 0), CHAN5G(64, 0),
CHAN5G(100, 0), CHAN5G(104, 0),
CHAN5G(108, 0), CHAN5G(112, 0),
CHAN5G(116, 0), CHAN5G(120, 0),
CHAN5G(124, 0), CHAN5G(128, 0),
CHAN5G(132, 0), CHAN5G(136, 0),
CHAN5G(140, 0), CHAN5G(149, 0),
CHAN5G(153, 0), CHAN5G(157, 0),
CHAN5G(161, 0), CHAN5G(165, 0),
CHAN5G(184, 0), CHAN5G(188, 0),
CHAN5G(192, 0), CHAN5G(196, 0),
CHAN5G(200, 0), CHAN5G(204, 0),
CHAN5G(208, 0), CHAN5G(212, 0),
CHAN5G(216, 0),
};
static struct ieee80211_channel __wl_5ghz_n_channels[] = {
CHAN5G(32, 0), CHAN5G(34, 0),
CHAN5G(36, 0), CHAN5G(38, 0),
CHAN5G(40, 0), CHAN5G(42, 0),
CHAN5G(44, 0), CHAN5G(46, 0),
CHAN5G(48, 0), CHAN5G(50, 0),
CHAN5G(52, 0), CHAN5G(54, 0),
CHAN5G(56, 0), CHAN5G(58, 0),
CHAN5G(60, 0), CHAN5G(62, 0),
CHAN5G(64, 0), CHAN5G(66, 0),
CHAN5G(68, 0), CHAN5G(70, 0),
CHAN5G(72, 0), CHAN5G(74, 0),
CHAN5G(76, 0), CHAN5G(78, 0),
CHAN5G(80, 0), CHAN5G(82, 0),
CHAN5G(84, 0), CHAN5G(86, 0),
CHAN5G(88, 0), CHAN5G(90, 0),
CHAN5G(92, 0), CHAN5G(94, 0),
CHAN5G(96, 0), CHAN5G(98, 0),
CHAN5G(100, 0), CHAN5G(102, 0),
CHAN5G(104, 0), CHAN5G(106, 0),
CHAN5G(108, 0), CHAN5G(110, 0),
CHAN5G(112, 0), CHAN5G(114, 0),
CHAN5G(116, 0), CHAN5G(118, 0),
CHAN5G(120, 0), CHAN5G(122, 0),
CHAN5G(124, 0), CHAN5G(126, 0),
CHAN5G(128, 0), CHAN5G(130, 0),
CHAN5G(132, 0), CHAN5G(134, 0),
CHAN5G(136, 0), CHAN5G(138, 0),
CHAN5G(140, 0), CHAN5G(142, 0),
CHAN5G(144, 0), CHAN5G(145, 0),
CHAN5G(146, 0), CHAN5G(147, 0),
CHAN5G(148, 0), CHAN5G(149, 0),
CHAN5G(150, 0), CHAN5G(151, 0),
CHAN5G(152, 0), CHAN5G(153, 0),
CHAN5G(154, 0), CHAN5G(155, 0),
CHAN5G(156, 0), CHAN5G(157, 0),
CHAN5G(158, 0), CHAN5G(159, 0),
CHAN5G(160, 0), CHAN5G(161, 0),
CHAN5G(162, 0), CHAN5G(163, 0),
CHAN5G(164, 0), CHAN5G(165, 0),
CHAN5G(166, 0), CHAN5G(168, 0),
CHAN5G(170, 0), CHAN5G(172, 0),
CHAN5G(174, 0), CHAN5G(176, 0),
CHAN5G(178, 0), CHAN5G(180, 0),
CHAN5G(182, 0), CHAN5G(184, 0),
CHAN5G(186, 0), CHAN5G(188, 0),
CHAN5G(190, 0), CHAN5G(192, 0),
CHAN5G(194, 0), CHAN5G(196, 0),
CHAN5G(198, 0), CHAN5G(200, 0),
CHAN5G(202, 0), CHAN5G(204, 0),
CHAN5G(206, 0), CHAN5G(208, 0),
CHAN5G(210, 0), CHAN5G(212, 0),
CHAN5G(214, 0), CHAN5G(216, 0),
CHAN5G(218, 0), CHAN5G(220, 0),
CHAN5G(222, 0), CHAN5G(224, 0),
CHAN5G(226, 0), CHAN5G(228, 0),
};
static struct ieee80211_supported_band __wl_band_2ghz = {
.band = IEEE80211_BAND_2GHZ,
.channels = __wl_2ghz_channels,
.n_channels = ARRAY_SIZE(__wl_2ghz_channels),
.bitrates = wl_g_rates,
.n_bitrates = wl_g_rates_size,
};
static struct ieee80211_supported_band __wl_band_5ghz_a = {
.band = IEEE80211_BAND_5GHZ,
.channels = __wl_5ghz_a_channels,
.n_channels = ARRAY_SIZE(__wl_5ghz_a_channels),
.bitrates = wl_a_rates,
.n_bitrates = wl_a_rates_size,
};
static struct ieee80211_supported_band __wl_band_5ghz_n = {
.band = IEEE80211_BAND_5GHZ,
.channels = __wl_5ghz_n_channels,
.n_channels = ARRAY_SIZE(__wl_5ghz_n_channels),
.bitrates = wl_a_rates,
.n_bitrates = wl_a_rates_size,
};
static const u32 __wl_cipher_suites[] = {
WLAN_CIPHER_SUITE_WEP40,
WLAN_CIPHER_SUITE_WEP104,
WLAN_CIPHER_SUITE_TKIP,
WLAN_CIPHER_SUITE_CCMP,
WLAN_CIPHER_SUITE_AES_CMAC,
};
/* tag_ID/length/value_buffer tuple */
struct brcmf_tlv {
u8 id;
u8 len;
u8 data[1];
};
/* Quarter dBm units to mW
* Table starts at QDBM_OFFSET, so the first entry is mW for qdBm=153
* Table is offset so the last entry is largest mW value that fits in
* a u16.
*/
#define QDBM_OFFSET 153 /* Offset for first entry */
#define QDBM_TABLE_LEN 40 /* Table size */
/* Smallest mW value that will round up to the first table entry, QDBM_OFFSET.
* Value is ( mW(QDBM_OFFSET - 1) + mW(QDBM_OFFSET) ) / 2
*/
#define QDBM_TABLE_LOW_BOUND 6493 /* Low bound */
/* Largest mW value that will round down to the last table entry,
* QDBM_OFFSET + QDBM_TABLE_LEN-1.
* Value is ( mW(QDBM_OFFSET + QDBM_TABLE_LEN - 1) +
* mW(QDBM_OFFSET + QDBM_TABLE_LEN) ) / 2.
*/
#define QDBM_TABLE_HIGH_BOUND 64938 /* High bound */
static const u16 nqdBm_to_mW_map[QDBM_TABLE_LEN] = {
/* qdBm: +0 +1 +2 +3 +4 +5 +6 +7 */
/* 153: */ 6683, 7079, 7499, 7943, 8414, 8913, 9441, 10000,
/* 161: */ 10593, 11220, 11885, 12589, 13335, 14125, 14962, 15849,
/* 169: */ 16788, 17783, 18836, 19953, 21135, 22387, 23714, 25119,
/* 177: */ 26607, 28184, 29854, 31623, 33497, 35481, 37584, 39811,
/* 185: */ 42170, 44668, 47315, 50119, 53088, 56234, 59566, 63096
};
static u16 brcmf_qdbm_to_mw(u8 qdbm)
{
uint factor = 1;
int idx = qdbm - QDBM_OFFSET;
if (idx >= QDBM_TABLE_LEN)
/* clamp to max u16 mW value */
return 0xFFFF;
/* scale the qdBm index up to the range of the table 0-40
* where an offset of 40 qdBm equals a factor of 10 mW.
*/
while (idx < 0) {
idx += 40;
factor *= 10;
}
/* return the mW value scaled down to the correct factor of 10,
* adding in factor/2 to get proper rounding.
*/
return (nqdBm_to_mW_map[idx] + factor / 2) / factor;
}
static u8 brcmf_mw_to_qdbm(u16 mw)
{
u8 qdbm;
int offset;
uint mw_uint = mw;
uint boundary;
/* handle boundary case */
if (mw_uint <= 1)
return 0;
offset = QDBM_OFFSET;
/* move mw into the range of the table */
while (mw_uint < QDBM_TABLE_LOW_BOUND) {
mw_uint *= 10;
offset -= 40;
}
for (qdbm = 0; qdbm < QDBM_TABLE_LEN - 1; qdbm++) {
boundary = nqdBm_to_mW_map[qdbm] + (nqdBm_to_mW_map[qdbm + 1] -
nqdBm_to_mW_map[qdbm]) / 2;
if (mw_uint < boundary)
break;
}
qdbm += (u8) offset;
return qdbm;
}
/* function for reading/writing a single u32 from/to the dongle */
static int
brcmf_exec_dcmd_u32(struct net_device *ndev, u32 cmd, u32 *par)
{
int err;
__le32 par_le = cpu_to_le32(*par);
err = brcmf_exec_dcmd(ndev, cmd, &par_le, sizeof(__le32));
*par = le32_to_cpu(par_le);
return err;
}
static void convert_key_from_CPU(struct brcmf_wsec_key *key,
struct brcmf_wsec_key_le *key_le)
{
key_le->index = cpu_to_le32(key->index);
key_le->len = cpu_to_le32(key->len);
key_le->algo = cpu_to_le32(key->algo);
key_le->flags = cpu_to_le32(key->flags);
key_le->rxiv.hi = cpu_to_le32(key->rxiv.hi);
key_le->rxiv.lo = cpu_to_le16(key->rxiv.lo);
key_le->iv_initialized = cpu_to_le32(key->iv_initialized);
memcpy(key_le->data, key->data, sizeof(key->data));
memcpy(key_le->ea, key->ea, sizeof(key->ea));
}
static int send_key_to_dongle(struct net_device *ndev,
struct brcmf_wsec_key *key)
{
int err;
struct brcmf_wsec_key_le key_le;
convert_key_from_CPU(key, &key_le);
err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_KEY, &key_le, sizeof(key_le));
if (err)
WL_ERR("WLC_SET_KEY error (%d)\n", err);
return err;
}
static s32
brcmf_cfg80211_change_iface(struct wiphy *wiphy, struct net_device *ndev,
enum nl80211_iftype type, u32 *flags,
struct vif_params *params)
{
struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy);
struct wireless_dev *wdev;
s32 infra = 0;
s32 err = 0;
WL_TRACE("Enter\n");
if (!check_sys_up(wiphy))
return -EIO;
switch (type) {
case NL80211_IFTYPE_MONITOR:
case NL80211_IFTYPE_WDS:
WL_ERR("type (%d) : currently we do not support this type\n",
type);
return -EOPNOTSUPP;
case NL80211_IFTYPE_ADHOC:
cfg_priv->conf->mode = WL_MODE_IBSS;
infra = 0;
break;
case NL80211_IFTYPE_STATION:
cfg_priv->conf->mode = WL_MODE_BSS;
infra = 1;
break;
default:
err = -EINVAL;
goto done;
}
err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_INFRA, &infra);
if (err) {
WL_ERR("WLC_SET_INFRA error (%d)\n", err);
err = -EAGAIN;
} else {
wdev = ndev->ieee80211_ptr;
wdev->iftype = type;
}
WL_INFO("IF Type = %s\n",
(cfg_priv->conf->mode == WL_MODE_IBSS) ? "Adhoc" : "Infra");
done:
WL_TRACE("Exit\n");
return err;
}
static s32 brcmf_dev_intvar_set(struct net_device *ndev, s8 *name, s32 val)
{
s8 buf[BRCMF_DCMD_SMLEN];
u32 len;
s32 err = 0;
__le32 val_le;
val_le = cpu_to_le32(val);
len = brcmf_c_mkiovar(name, (char *)(&val_le), sizeof(val_le), buf,
sizeof(buf));
BUG_ON(!len);
err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_VAR, buf, len);
if (err)
WL_ERR("error (%d)\n", err);
return err;
}
static s32
brcmf_dev_intvar_get(struct net_device *ndev, s8 *name, s32 *retval)
{
union {
s8 buf[BRCMF_DCMD_SMLEN];
__le32 val;
} var;
u32 len;
u32 data_null;
s32 err = 0;
len =
brcmf_c_mkiovar(name, (char *)(&data_null), 0, (char *)(&var),
sizeof(var.buf));
BUG_ON(!len);
err = brcmf_exec_dcmd(ndev, BRCMF_C_GET_VAR, &var, len);
if (err)
WL_ERR("error (%d)\n", err);
*retval = le32_to_cpu(var.val);
return err;
}
static void brcmf_set_mpc(struct net_device *ndev, int mpc)
{
s32 err = 0;
struct brcmf_cfg80211_priv *cfg_priv = ndev_to_cfg(ndev);
if (test_bit(WL_STATUS_READY, &cfg_priv->status)) {
err = brcmf_dev_intvar_set(ndev, "mpc", mpc);
if (err) {
WL_ERR("fail to set mpc\n");
return;
}
WL_INFO("MPC : %d\n", mpc);
}
}
static void wl_iscan_prep(struct brcmf_scan_params_le *params_le,
struct brcmf_ssid *ssid)
{
memcpy(params_le->bssid, ether_bcast, ETH_ALEN);
params_le->bss_type = DOT11_BSSTYPE_ANY;
params_le->scan_type = 0;
params_le->channel_num = 0;
params_le->nprobes = cpu_to_le32(-1);
params_le->active_time = cpu_to_le32(-1);
params_le->passive_time = cpu_to_le32(-1);
params_le->home_time = cpu_to_le32(-1);
if (ssid && ssid->SSID_len)
memcpy(&params_le->ssid_le, ssid, sizeof(struct brcmf_ssid));
}
static s32
brcmf_dev_iovar_setbuf(struct net_device *ndev, s8 * iovar, void *param,
s32 paramlen, void *bufptr, s32 buflen)
{
s32 iolen;
iolen = brcmf_c_mkiovar(iovar, param, paramlen, bufptr, buflen);
BUG_ON(!iolen);
return brcmf_exec_dcmd(ndev, BRCMF_C_SET_VAR, bufptr, iolen);
}
static s32
brcmf_dev_iovar_getbuf(struct net_device *ndev, s8 * iovar, void *param,
s32 paramlen, void *bufptr, s32 buflen)
{
s32 iolen;
iolen = brcmf_c_mkiovar(iovar, param, paramlen, bufptr, buflen);
BUG_ON(!iolen);
return brcmf_exec_dcmd(ndev, BRCMF_C_GET_VAR, bufptr, buflen);
}
static s32
brcmf_run_iscan(struct brcmf_cfg80211_iscan_ctrl *iscan,
struct brcmf_ssid *ssid, u16 action)
{
s32 params_size = BRCMF_SCAN_PARAMS_FIXED_SIZE +
offsetof(struct brcmf_iscan_params_le, params_le);
struct brcmf_iscan_params_le *params;
s32 err = 0;
if (ssid && ssid->SSID_len)
params_size += sizeof(struct brcmf_ssid);
params = kzalloc(params_size, GFP_KERNEL);
if (!params)
return -ENOMEM;
BUG_ON(params_size >= BRCMF_DCMD_SMLEN);
wl_iscan_prep(&params->params_le, ssid);
params->version = cpu_to_le32(BRCMF_ISCAN_REQ_VERSION);
params->action = cpu_to_le16(action);
params->scan_duration = cpu_to_le16(0);
err = brcmf_dev_iovar_setbuf(iscan->ndev, "iscan", params, params_size,
iscan->dcmd_buf, BRCMF_DCMD_SMLEN);
if (err) {
if (err == -EBUSY)
WL_INFO("system busy : iscan canceled\n");
else
WL_ERR("error (%d)\n", err);
}
kfree(params);
return err;
}
static s32 brcmf_do_iscan(struct brcmf_cfg80211_priv *cfg_priv)
{
struct brcmf_cfg80211_iscan_ctrl *iscan = cfg_to_iscan(cfg_priv);
struct net_device *ndev = cfg_to_ndev(cfg_priv);
struct brcmf_ssid ssid;
__le32 passive_scan;
s32 err = 0;
/* Broadcast scan by default */
memset(&ssid, 0, sizeof(ssid));
iscan->state = WL_ISCAN_STATE_SCANING;
passive_scan = cfg_priv->active_scan ? 0 : cpu_to_le32(1);
err = brcmf_exec_dcmd(cfg_to_ndev(cfg_priv), BRCMF_C_SET_PASSIVE_SCAN,
&passive_scan, sizeof(passive_scan));
if (err) {
WL_ERR("error (%d)\n", err);
return err;
}
brcmf_set_mpc(ndev, 0);
cfg_priv->iscan_kickstart = true;
err = brcmf_run_iscan(iscan, &ssid, BRCMF_SCAN_ACTION_START);
if (err) {
brcmf_set_mpc(ndev, 1);
cfg_priv->iscan_kickstart = false;
return err;
}
mod_timer(&iscan->timer, jiffies + iscan->timer_ms * HZ / 1000);
iscan->timer_on = 1;
return err;
}
static s32
__brcmf_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev,
struct cfg80211_scan_request *request,
struct cfg80211_ssid *this_ssid)
{
struct brcmf_cfg80211_priv *cfg_priv = ndev_to_cfg(ndev);
struct cfg80211_ssid *ssids;
struct brcmf_cfg80211_scan_req *sr = cfg_priv->scan_req_int;
__le32 passive_scan;
bool iscan_req;
bool spec_scan;
s32 err = 0;
u32 SSID_len;
if (test_bit(WL_STATUS_SCANNING, &cfg_priv->status)) {
WL_ERR("Scanning already : status (%lu)\n", cfg_priv->status);
return -EAGAIN;
}
if (test_bit(WL_STATUS_SCAN_ABORTING, &cfg_priv->status)) {
WL_ERR("Scanning being aborted : status (%lu)\n",
cfg_priv->status);
return -EAGAIN;
}
if (test_bit(WL_STATUS_CONNECTING, &cfg_priv->status)) {
WL_ERR("Connecting : status (%lu)\n",
cfg_priv->status);
return -EAGAIN;
}
iscan_req = false;
spec_scan = false;
if (request) {
/* scan bss */
ssids = request->ssids;
if (cfg_priv->iscan_on && (!ssids || !ssids->ssid_len))
iscan_req = true;
} else {
/* scan in ibss */
/* we don't do iscan in ibss */
ssids = this_ssid;
}
cfg_priv->scan_request = request;
set_bit(WL_STATUS_SCANNING, &cfg_priv->status);
if (iscan_req) {
err = brcmf_do_iscan(cfg_priv);
if (!err)
return err;
else
goto scan_out;
} else {
WL_SCAN("ssid \"%s\", ssid_len (%d)\n",
ssids->ssid, ssids->ssid_len);
memset(&sr->ssid_le, 0, sizeof(sr->ssid_le));
SSID_len = min_t(u8, sizeof(sr->ssid_le.SSID), ssids->ssid_len);
sr->ssid_le.SSID_len = cpu_to_le32(0);
if (SSID_len) {
memcpy(sr->ssid_le.SSID, ssids->ssid, SSID_len);
sr->ssid_le.SSID_len = cpu_to_le32(SSID_len);
spec_scan = true;
} else {
WL_SCAN("Broadcast scan\n");
}
passive_scan = cfg_priv->active_scan ? 0 : cpu_to_le32(1);
err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_PASSIVE_SCAN,
&passive_scan, sizeof(passive_scan));
if (err) {
WL_ERR("WLC_SET_PASSIVE_SCAN error (%d)\n", err);
goto scan_out;
}
brcmf_set_mpc(ndev, 0);
err = brcmf_exec_dcmd(ndev, BRCMF_C_SCAN, &sr->ssid_le,
sizeof(sr->ssid_le));
if (err) {
if (err == -EBUSY)
WL_INFO("system busy : scan for \"%s\" "
"canceled\n", sr->ssid_le.SSID);
else
WL_ERR("WLC_SCAN error (%d)\n", err);
brcmf_set_mpc(ndev, 1);
goto scan_out;
}
}
return 0;
scan_out:
clear_bit(WL_STATUS_SCANNING, &cfg_priv->status);
cfg_priv->scan_request = NULL;
return err;
}
static s32
brcmf_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev,
struct cfg80211_scan_request *request)
{
s32 err = 0;
WL_TRACE("Enter\n");
if (!check_sys_up(wiphy))
return -EIO;
err = __brcmf_cfg80211_scan(wiphy, ndev, request, NULL);
if (err)
WL_ERR("scan error (%d)\n", err);
WL_TRACE("Exit\n");
return err;
}
static s32 brcmf_set_rts(struct net_device *ndev, u32 rts_threshold)
{
s32 err = 0;
err = brcmf_dev_intvar_set(ndev, "rtsthresh", rts_threshold);
if (err)
WL_ERR("Error (%d)\n", err);
return err;
}
static s32 brcmf_set_frag(struct net_device *ndev, u32 frag_threshold)
{
s32 err = 0;
err = brcmf_dev_intvar_set(ndev, "fragthresh", frag_threshold);
if (err)
WL_ERR("Error (%d)\n", err);
return err;
}
static s32 brcmf_set_retry(struct net_device *ndev, u32 retry, bool l)
{
s32 err = 0;
u32 cmd = (l ? BRCM_SET_LRL : BRCM_SET_SRL);
err = brcmf_exec_dcmd_u32(ndev, cmd, &retry);
if (err) {
WL_ERR("cmd (%d) , error (%d)\n", cmd, err);
return err;
}
return err;
}
static s32 brcmf_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed)
{
struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy);
struct net_device *ndev = cfg_to_ndev(cfg_priv);
s32 err = 0;
WL_TRACE("Enter\n");
if (!check_sys_up(wiphy))
return -EIO;
if (changed & WIPHY_PARAM_RTS_THRESHOLD &&
(cfg_priv->conf->rts_threshold != wiphy->rts_threshold)) {
cfg_priv->conf->rts_threshold = wiphy->rts_threshold;
err = brcmf_set_rts(ndev, cfg_priv->conf->rts_threshold);
if (!err)
goto done;
}
if (changed & WIPHY_PARAM_FRAG_THRESHOLD &&
(cfg_priv->conf->frag_threshold != wiphy->frag_threshold)) {
cfg_priv->conf->frag_threshold = wiphy->frag_threshold;
err = brcmf_set_frag(ndev, cfg_priv->conf->frag_threshold);
if (!err)
goto done;
}
if (changed & WIPHY_PARAM_RETRY_LONG
&& (cfg_priv->conf->retry_long != wiphy->retry_long)) {
cfg_priv->conf->retry_long = wiphy->retry_long;
err = brcmf_set_retry(ndev, cfg_priv->conf->retry_long, true);
if (!err)
goto done;
}
if (changed & WIPHY_PARAM_RETRY_SHORT
&& (cfg_priv->conf->retry_short != wiphy->retry_short)) {
cfg_priv->conf->retry_short = wiphy->retry_short;
err = brcmf_set_retry(ndev, cfg_priv->conf->retry_short, false);
if (!err)
goto done;
}
done:
WL_TRACE("Exit\n");
return err;
}
static void *brcmf_read_prof(struct brcmf_cfg80211_priv *cfg_priv, s32 item)
{
switch (item) {
case WL_PROF_SEC:
return &cfg_priv->profile->sec;
case WL_PROF_BSSID:
return &cfg_priv->profile->bssid;
case WL_PROF_SSID:
return &cfg_priv->profile->ssid;
}
WL_ERR("invalid item (%d)\n", item);
return NULL;
}
static s32
brcmf_update_prof(struct brcmf_cfg80211_priv *cfg_priv,
const struct brcmf_event_msg *e, void *data, s32 item)
{
s32 err = 0;
struct brcmf_ssid *ssid;
switch (item) {
case WL_PROF_SSID:
ssid = (struct brcmf_ssid *) data;
memset(cfg_priv->profile->ssid.SSID, 0,
sizeof(cfg_priv->profile->ssid.SSID));
memcpy(cfg_priv->profile->ssid.SSID,
ssid->SSID, ssid->SSID_len);
cfg_priv->profile->ssid.SSID_len = ssid->SSID_len;
break;
case WL_PROF_BSSID:
if (data)
memcpy(cfg_priv->profile->bssid, data, ETH_ALEN);
else
memset(cfg_priv->profile->bssid, 0, ETH_ALEN);
break;
case WL_PROF_SEC:
memcpy(&cfg_priv->profile->sec, data,
sizeof(cfg_priv->profile->sec));
break;
case WL_PROF_BEACONINT:
cfg_priv->profile->beacon_interval = *(u16 *)data;
break;
case WL_PROF_DTIMPERIOD:
cfg_priv->profile->dtim_period = *(u8 *)data;
break;
default:
WL_ERR("unsupported item (%d)\n", item);
err = -EOPNOTSUPP;
break;
}
return err;
}
static void brcmf_init_prof(struct brcmf_cfg80211_profile *prof)
{
memset(prof, 0, sizeof(*prof));
}
static void brcmf_ch_to_chanspec(int ch, struct brcmf_join_params *join_params,
size_t *join_params_size)
{
u16 chanspec = 0;
if (ch != 0) {
if (ch <= CH_MAX_2G_CHANNEL)
chanspec |= WL_CHANSPEC_BAND_2G;
else
chanspec |= WL_CHANSPEC_BAND_5G;
chanspec |= WL_CHANSPEC_BW_20;
chanspec |= WL_CHANSPEC_CTL_SB_NONE;
*join_params_size += BRCMF_ASSOC_PARAMS_FIXED_SIZE +
sizeof(u16);
chanspec |= (ch & WL_CHANSPEC_CHAN_MASK);
join_params->params_le.chanspec_list[0] = cpu_to_le16(chanspec);
join_params->params_le.chanspec_num = cpu_to_le32(1);
WL_CONN("join_params->params.chanspec_list[0]= %#X,"
"channel %d, chanspec %#X\n",
chanspec, ch, chanspec);
}
}
static void brcmf_link_down(struct brcmf_cfg80211_priv *cfg_priv)
{
struct net_device *ndev = NULL;
s32 err = 0;
WL_TRACE("Enter\n");
if (cfg_priv->link_up) {
ndev = cfg_to_ndev(cfg_priv);
WL_INFO("Call WLC_DISASSOC to stop excess roaming\n ");
err = brcmf_exec_dcmd(ndev, BRCMF_C_DISASSOC, NULL, 0);
if (err)
WL_ERR("WLC_DISASSOC failed (%d)\n", err);
cfg_priv->link_up = false;
}
WL_TRACE("Exit\n");
}
static s32
brcmf_cfg80211_join_ibss(struct wiphy *wiphy, struct net_device *ndev,
struct cfg80211_ibss_params *params)
{
struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy);
struct brcmf_join_params join_params;
size_t join_params_size = 0;
s32 err = 0;
s32 wsec = 0;
s32 bcnprd;
struct brcmf_ssid ssid;
WL_TRACE("Enter\n");
if (!check_sys_up(wiphy))
return -EIO;
if (params->ssid)
WL_CONN("SSID: %s\n", params->ssid);
else {
WL_CONN("SSID: NULL, Not supported\n");
return -EOPNOTSUPP;
}
set_bit(WL_STATUS_CONNECTING, &cfg_priv->status);
if (params->bssid)
WL_CONN("BSSID: %02X %02X %02X %02X %02X %02X\n",
params->bssid[0], params->bssid[1], params->bssid[2],
params->bssid[3], params->bssid[4], params->bssid[5]);
else
WL_CONN("No BSSID specified\n");
if (params->channel)
WL_CONN("channel: %d\n", params->channel->center_freq);
else
WL_CONN("no channel specified\n");
if (params->channel_fixed)
WL_CONN("fixed channel required\n");
else
WL_CONN("no fixed channel required\n");
if (params->ie && params->ie_len)
WL_CONN("ie len: %d\n", params->ie_len);
else
WL_CONN("no ie specified\n");
if (params->beacon_interval)
WL_CONN("beacon interval: %d\n", params->beacon_interval);
else
WL_CONN("no beacon interval specified\n");
if (params->basic_rates)
WL_CONN("basic rates: %08X\n", params->basic_rates);
else
WL_CONN("no basic rates specified\n");
if (params->privacy)
WL_CONN("privacy required\n");
else
WL_CONN("no privacy required\n");
/* Configure Privacy for starter */
if (params->privacy)
wsec |= WEP_ENABLED;
err = brcmf_dev_intvar_set(ndev, "wsec", wsec);
if (err) {
WL_ERR("wsec failed (%d)\n", err);
goto done;
}
/* Configure Beacon Interval for starter */
if (params->beacon_interval)
bcnprd = params->beacon_interval;
else
bcnprd = 100;
err = brcmf_exec_dcmd_u32(ndev, BRCM_SET_BCNPRD, &bcnprd);
if (err) {
WL_ERR("WLC_SET_BCNPRD failed (%d)\n", err);
goto done;
}
/* Configure required join parameter */
memset(&join_params, 0, sizeof(struct brcmf_join_params));
/* SSID */
ssid.SSID_len = min_t(u32, params->ssid_len, 32);
memcpy(ssid.SSID, params->ssid, ssid.SSID_len);
memcpy(join_params.ssid_le.SSID, params->ssid, ssid.SSID_len);
join_params.ssid_le.SSID_len = cpu_to_le32(ssid.SSID_len);
join_params_size = sizeof(join_params.ssid_le);
brcmf_update_prof(cfg_priv, NULL, &ssid, WL_PROF_SSID);
/* BSSID */
if (params->bssid) {
memcpy(join_params.params_le.bssid, params->bssid, ETH_ALEN);
join_params_size = sizeof(join_params.ssid_le) +
BRCMF_ASSOC_PARAMS_FIXED_SIZE;
} else {
memcpy(join_params.params_le.bssid, ether_bcast, ETH_ALEN);
}
brcmf_update_prof(cfg_priv, NULL,
&join_params.params_le.bssid, WL_PROF_BSSID);
/* Channel */
if (params->channel) {
u32 target_channel;
cfg_priv->channel =
ieee80211_frequency_to_channel(
params->channel->center_freq);
if (params->channel_fixed) {
/* adding chanspec */
brcmf_ch_to_chanspec(cfg_priv->channel,
&join_params, &join_params_size);
}
/* set channel for starter */
target_channel = cfg_priv->channel;
err = brcmf_exec_dcmd_u32(ndev, BRCM_SET_CHANNEL,
&target_channel);
if (err) {
WL_ERR("WLC_SET_CHANNEL failed (%d)\n", err);
goto done;
}
} else
cfg_priv->channel = 0;
cfg_priv->ibss_starter = false;
err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_SSID,
&join_params, join_params_size);
if (err) {
WL_ERR("WLC_SET_SSID failed (%d)\n", err);
goto done;
}
done:
if (err)
clear_bit(WL_STATUS_CONNECTING, &cfg_priv->status);
WL_TRACE("Exit\n");
return err;
}
static s32
brcmf_cfg80211_leave_ibss(struct wiphy *wiphy, struct net_device *ndev)
{
struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy);
s32 err = 0;
WL_TRACE("Enter\n");
if (!check_sys_up(wiphy))
return -EIO;
brcmf_link_down(cfg_priv);
WL_TRACE("Exit\n");
return err;
}
static s32 brcmf_set_wpa_version(struct net_device *ndev,
struct cfg80211_connect_params *sme)
{
struct brcmf_cfg80211_priv *cfg_priv = ndev_to_cfg(ndev);
struct brcmf_cfg80211_security *sec;
s32 val = 0;
s32 err = 0;
if (sme->crypto.wpa_versions & NL80211_WPA_VERSION_1)
val = WPA_AUTH_PSK | WPA_AUTH_UNSPECIFIED;
else if (sme->crypto.wpa_versions & NL80211_WPA_VERSION_2)
val = WPA2_AUTH_PSK | WPA2_AUTH_UNSPECIFIED;
else
val = WPA_AUTH_DISABLED;
WL_CONN("setting wpa_auth to 0x%0x\n", val);
err = brcmf_dev_intvar_set(ndev, "wpa_auth", val);
if (err) {
WL_ERR("set wpa_auth failed (%d)\n", err);
return err;
}
sec = brcmf_read_prof(cfg_priv, WL_PROF_SEC);
sec->wpa_versions = sme->crypto.wpa_versions;
return err;
}
static s32 brcmf_set_auth_type(struct net_device *ndev,
struct cfg80211_connect_params *sme)
{
struct brcmf_cfg80211_priv *cfg_priv = ndev_to_cfg(ndev);
struct brcmf_cfg80211_security *sec;
s32 val = 0;
s32 err = 0;
switch (sme->auth_type) {
case NL80211_AUTHTYPE_OPEN_SYSTEM:
val = 0;
WL_CONN("open system\n");
break;
case NL80211_AUTHTYPE_SHARED_KEY:
val = 1;
WL_CONN("shared key\n");
break;
case NL80211_AUTHTYPE_AUTOMATIC:
val = 2;
WL_CONN("automatic\n");
break;
case NL80211_AUTHTYPE_NETWORK_EAP:
WL_CONN("network eap\n");
default:
val = 2;
WL_ERR("invalid auth type (%d)\n", sme->auth_type);
break;
}
err = brcmf_dev_intvar_set(ndev, "auth", val);
if (err) {
WL_ERR("set auth failed (%d)\n", err);
return err;
}
sec = brcmf_read_prof(cfg_priv, WL_PROF_SEC);
sec->auth_type = sme->auth_type;
return err;
}
static s32
brcmf_set_set_cipher(struct net_device *ndev,
struct cfg80211_connect_params *sme)
{
struct brcmf_cfg80211_priv *cfg_priv = ndev_to_cfg(ndev);
struct brcmf_cfg80211_security *sec;
s32 pval = 0;
s32 gval = 0;
s32 err = 0;
if (sme->crypto.n_ciphers_pairwise) {
switch (sme->crypto.ciphers_pairwise[0]) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
pval = WEP_ENABLED;
break;
case WLAN_CIPHER_SUITE_TKIP:
pval = TKIP_ENABLED;
break;
case WLAN_CIPHER_SUITE_CCMP:
pval = AES_ENABLED;
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
pval = AES_ENABLED;
break;
default:
WL_ERR("invalid cipher pairwise (%d)\n",
sme->crypto.ciphers_pairwise[0]);
return -EINVAL;
}
}
if (sme->crypto.cipher_group) {
switch (sme->crypto.cipher_group) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
gval = WEP_ENABLED;
break;
case WLAN_CIPHER_SUITE_TKIP:
gval = TKIP_ENABLED;
break;
case WLAN_CIPHER_SUITE_CCMP:
gval = AES_ENABLED;
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
gval = AES_ENABLED;
break;
default:
WL_ERR("invalid cipher group (%d)\n",
sme->crypto.cipher_group);
return -EINVAL;
}
}
WL_CONN("pval (%d) gval (%d)\n", pval, gval);
err = brcmf_dev_intvar_set(ndev, "wsec", pval | gval);
if (err) {
WL_ERR("error (%d)\n", err);
return err;
}
sec = brcmf_read_prof(cfg_priv, WL_PROF_SEC);
sec->cipher_pairwise = sme->crypto.ciphers_pairwise[0];
sec->cipher_group = sme->crypto.cipher_group;
return err;
}
static s32
brcmf_set_key_mgmt(struct net_device *ndev, struct cfg80211_connect_params *sme)
{
struct brcmf_cfg80211_priv *cfg_priv = ndev_to_cfg(ndev);
struct brcmf_cfg80211_security *sec;
s32 val = 0;
s32 err = 0;
if (sme->crypto.n_akm_suites) {
err = brcmf_dev_intvar_get(ndev, "wpa_auth", &val);
if (err) {
WL_ERR("could not get wpa_auth (%d)\n", err);
return err;
}
if (val & (WPA_AUTH_PSK | WPA_AUTH_UNSPECIFIED)) {
switch (sme->crypto.akm_suites[0]) {
case WLAN_AKM_SUITE_8021X:
val = WPA_AUTH_UNSPECIFIED;
break;
case WLAN_AKM_SUITE_PSK:
val = WPA_AUTH_PSK;
break;
default:
WL_ERR("invalid cipher group (%d)\n",
sme->crypto.cipher_group);
return -EINVAL;
}
} else if (val & (WPA2_AUTH_PSK | WPA2_AUTH_UNSPECIFIED)) {
switch (sme->crypto.akm_suites[0]) {
case WLAN_AKM_SUITE_8021X:
val = WPA2_AUTH_UNSPECIFIED;
break;
case WLAN_AKM_SUITE_PSK:
val = WPA2_AUTH_PSK;
break;
default:
WL_ERR("invalid cipher group (%d)\n",
sme->crypto.cipher_group);
return -EINVAL;
}
}
WL_CONN("setting wpa_auth to %d\n", val);
err = brcmf_dev_intvar_set(ndev, "wpa_auth", val);
if (err) {
WL_ERR("could not set wpa_auth (%d)\n", err);
return err;
}
}
sec = brcmf_read_prof(cfg_priv, WL_PROF_SEC);
sec->wpa_auth = sme->crypto.akm_suites[0];
return err;
}
static s32
brcmf_set_wep_sharedkey(struct net_device *ndev,
struct cfg80211_connect_params *sme)
{
struct brcmf_cfg80211_priv *cfg_priv = ndev_to_cfg(ndev);
struct brcmf_cfg80211_security *sec;
struct brcmf_wsec_key key;
s32 val;
s32 err = 0;
WL_CONN("key len (%d)\n", sme->key_len);
if (sme->key_len == 0)
return 0;
sec = brcmf_read_prof(cfg_priv, WL_PROF_SEC);
WL_CONN("wpa_versions 0x%x cipher_pairwise 0x%x\n",
sec->wpa_versions, sec->cipher_pairwise);
if (sec->wpa_versions & (NL80211_WPA_VERSION_1 | NL80211_WPA_VERSION_2))
return 0;
if (sec->cipher_pairwise &
(WLAN_CIPHER_SUITE_WEP40 | WLAN_CIPHER_SUITE_WEP104)) {
memset(&key, 0, sizeof(key));
key.len = (u32) sme->key_len;
key.index = (u32) sme->key_idx;
if (key.len > sizeof(key.data)) {
WL_ERR("Too long key length (%u)\n", key.len);
return -EINVAL;
}
memcpy(key.data, sme->key, key.len);
key.flags = BRCMF_PRIMARY_KEY;
switch (sec->cipher_pairwise) {
case WLAN_CIPHER_SUITE_WEP40:
key.algo = CRYPTO_ALGO_WEP1;
break;
case WLAN_CIPHER_SUITE_WEP104:
key.algo = CRYPTO_ALGO_WEP128;
break;
default:
WL_ERR("Invalid algorithm (%d)\n",
sme->crypto.ciphers_pairwise[0]);
return -EINVAL;
}
/* Set the new key/index */
WL_CONN("key length (%d) key index (%d) algo (%d)\n",
key.len, key.index, key.algo);
WL_CONN("key \"%s\"\n", key.data);
err = send_key_to_dongle(ndev, &key);
if (err)
return err;
if (sec->auth_type == NL80211_AUTHTYPE_OPEN_SYSTEM) {
WL_CONN("set auth_type to shared key\n");
val = 1; /* shared key */
err = brcmf_dev_intvar_set(ndev, "auth", val);
if (err) {
WL_ERR("set auth failed (%d)\n", err);
return err;
}
}
}
return err;
}
static s32
brcmf_cfg80211_connect(struct wiphy *wiphy, struct net_device *ndev,
struct cfg80211_connect_params *sme)
{
struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy);
struct ieee80211_channel *chan = sme->channel;
struct brcmf_join_params join_params;
size_t join_params_size;
struct brcmf_ssid ssid;
s32 err = 0;
WL_TRACE("Enter\n");
if (!check_sys_up(wiphy))
return -EIO;
if (!sme->ssid) {
WL_ERR("Invalid ssid\n");
return -EOPNOTSUPP;
}
set_bit(WL_STATUS_CONNECTING, &cfg_priv->status);
if (chan) {
cfg_priv->channel =
ieee80211_frequency_to_channel(chan->center_freq);
WL_CONN("channel (%d), center_req (%d)\n",
cfg_priv->channel, chan->center_freq);
} else
cfg_priv->channel = 0;
WL_INFO("ie (%p), ie_len (%zd)\n", sme->ie, sme->ie_len);
err = brcmf_set_wpa_version(ndev, sme);
if (err) {
WL_ERR("wl_set_wpa_version failed (%d)\n", err);
goto done;
}
err = brcmf_set_auth_type(ndev, sme);
if (err) {
WL_ERR("wl_set_auth_type failed (%d)\n", err);
goto done;
}
err = brcmf_set_set_cipher(ndev, sme);
if (err) {
WL_ERR("wl_set_set_cipher failed (%d)\n", err);
goto done;
}
err = brcmf_set_key_mgmt(ndev, sme);
if (err) {
WL_ERR("wl_set_key_mgmt failed (%d)\n", err);
goto done;
}
err = brcmf_set_wep_sharedkey(ndev, sme);
if (err) {
WL_ERR("brcmf_set_wep_sharedkey failed (%d)\n", err);
goto done;
}
memset(&join_params, 0, sizeof(join_params));
join_params_size = sizeof(join_params.ssid_le);
ssid.SSID_len = min_t(u32, sizeof(ssid.SSID), (u32)sme->ssid_len);
memcpy(&join_params.ssid_le.SSID, sme->ssid, ssid.SSID_len);
memcpy(&ssid.SSID, sme->ssid, ssid.SSID_len);
join_params.ssid_le.SSID_len = cpu_to_le32(ssid.SSID_len);
brcmf_update_prof(cfg_priv, NULL, &ssid, WL_PROF_SSID);
memcpy(join_params.params_le.bssid, ether_bcast, ETH_ALEN);
if (ssid.SSID_len < IEEE80211_MAX_SSID_LEN)
WL_CONN("ssid \"%s\", len (%d)\n",
ssid.SSID, ssid.SSID_len);
brcmf_ch_to_chanspec(cfg_priv->channel,
&join_params, &join_params_size);
err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_SSID,
&join_params, join_params_size);
if (err)
WL_ERR("WLC_SET_SSID failed (%d)\n", err);
done:
if (err)
clear_bit(WL_STATUS_CONNECTING, &cfg_priv->status);
WL_TRACE("Exit\n");
return err;
}
static s32
brcmf_cfg80211_disconnect(struct wiphy *wiphy, struct net_device *ndev,
u16 reason_code)
{
struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy);
struct brcmf_scb_val_le scbval;
s32 err = 0;
WL_TRACE("Enter. Reason code = %d\n", reason_code);
if (!check_sys_up(wiphy))
return -EIO;
clear_bit(WL_STATUS_CONNECTED, &cfg_priv->status);
memcpy(&scbval.ea, brcmf_read_prof(cfg_priv, WL_PROF_BSSID), ETH_ALEN);
scbval.val = cpu_to_le32(reason_code);
err = brcmf_exec_dcmd(ndev, BRCMF_C_DISASSOC, &scbval,
sizeof(struct brcmf_scb_val_le));
if (err)
WL_ERR("error (%d)\n", err);
cfg_priv->link_up = false;
WL_TRACE("Exit\n");
return err;
}
static s32
brcmf_cfg80211_set_tx_power(struct wiphy *wiphy,
enum nl80211_tx_power_setting type, s32 mbm)
{
struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy);
struct net_device *ndev = cfg_to_ndev(cfg_priv);
u16 txpwrmw;
s32 err = 0;
s32 disable = 0;
s32 dbm = MBM_TO_DBM(mbm);
WL_TRACE("Enter\n");
if (!check_sys_up(wiphy))
return -EIO;
switch (type) {
case NL80211_TX_POWER_AUTOMATIC:
break;
case NL80211_TX_POWER_LIMITED:
case NL80211_TX_POWER_FIXED:
if (dbm < 0) {
WL_ERR("TX_POWER_FIXED - dbm is negative\n");
err = -EINVAL;
goto done;
}
break;
}
/* Make sure radio is off or on as far as software is concerned */
disable = WL_RADIO_SW_DISABLE << 16;
err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_RADIO, &disable);
if (err)
WL_ERR("WLC_SET_RADIO error (%d)\n", err);
if (dbm > 0xffff)
txpwrmw = 0xffff;
else
txpwrmw = (u16) dbm;
err = brcmf_dev_intvar_set(ndev, "qtxpower",
(s32) (brcmf_mw_to_qdbm(txpwrmw)));
if (err)
WL_ERR("qtxpower error (%d)\n", err);
cfg_priv->conf->tx_power = dbm;
done:
WL_TRACE("Exit\n");
return err;
}
static s32 brcmf_cfg80211_get_tx_power(struct wiphy *wiphy, s32 *dbm)
{
struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy);
struct net_device *ndev = cfg_to_ndev(cfg_priv);
s32 txpwrdbm;
u8 result;
s32 err = 0;
WL_TRACE("Enter\n");
if (!check_sys_up(wiphy))
return -EIO;
err = brcmf_dev_intvar_get(ndev, "qtxpower", &txpwrdbm);
if (err) {
WL_ERR("error (%d)\n", err);
goto done;
}
result = (u8) (txpwrdbm & ~WL_TXPWR_OVERRIDE);
*dbm = (s32) brcmf_qdbm_to_mw(result);
done:
WL_TRACE("Exit\n");
return err;
}
static s32
brcmf_cfg80211_config_default_key(struct wiphy *wiphy, struct net_device *ndev,
u8 key_idx, bool unicast, bool multicast)
{
u32 index;
u32 wsec;
s32 err = 0;
WL_TRACE("Enter\n");
WL_CONN("key index (%d)\n", key_idx);
if (!check_sys_up(wiphy))
return -EIO;
err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_GET_WSEC, &wsec);
if (err) {
WL_ERR("WLC_GET_WSEC error (%d)\n", err);
goto done;
}
if (wsec & WEP_ENABLED) {
/* Just select a new current key */
index = key_idx;
err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_KEY_PRIMARY,
&index);
if (err)
WL_ERR("error (%d)\n", err);
}
done:
WL_TRACE("Exit\n");
return err;
}
static s32
brcmf_add_keyext(struct wiphy *wiphy, struct net_device *ndev,
u8 key_idx, const u8 *mac_addr, struct key_params *params)
{
struct brcmf_wsec_key key;
struct brcmf_wsec_key_le key_le;
s32 err = 0;
memset(&key, 0, sizeof(key));
key.index = (u32) key_idx;
/* Instead of bcast for ea address for default wep keys,
driver needs it to be Null */
if (!is_multicast_ether_addr(mac_addr))
memcpy((char *)&key.ea, (void *)mac_addr, ETH_ALEN);
key.len = (u32) params->key_len;
/* check for key index change */
if (key.len == 0) {
/* key delete */
err = send_key_to_dongle(ndev, &key);
if (err)
return err;
} else {
if (key.len > sizeof(key.data)) {
WL_ERR("Invalid key length (%d)\n", key.len);
return -EINVAL;
}
WL_CONN("Setting the key index %d\n", key.index);
memcpy(key.data, params->key, key.len);
if (params->cipher == WLAN_CIPHER_SUITE_TKIP) {
u8 keybuf[8];
memcpy(keybuf, &key.data[24], sizeof(keybuf));
memcpy(&key.data[24], &key.data[16], sizeof(keybuf));
memcpy(&key.data[16], keybuf, sizeof(keybuf));
}
/* if IW_ENCODE_EXT_RX_SEQ_VALID set */
if (params->seq && params->seq_len == 6) {
/* rx iv */
u8 *ivptr;
ivptr = (u8 *) params->seq;
key.rxiv.hi = (ivptr[5] << 24) | (ivptr[4] << 16) |
(ivptr[3] << 8) | ivptr[2];
key.rxiv.lo = (ivptr[1] << 8) | ivptr[0];
key.iv_initialized = true;
}
switch (params->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
key.algo = CRYPTO_ALGO_WEP1;
WL_CONN("WLAN_CIPHER_SUITE_WEP40\n");
break;
case WLAN_CIPHER_SUITE_WEP104:
key.algo = CRYPTO_ALGO_WEP128;
WL_CONN("WLAN_CIPHER_SUITE_WEP104\n");
break;
case WLAN_CIPHER_SUITE_TKIP:
key.algo = CRYPTO_ALGO_TKIP;
WL_CONN("WLAN_CIPHER_SUITE_TKIP\n");
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
key.algo = CRYPTO_ALGO_AES_CCM;
WL_CONN("WLAN_CIPHER_SUITE_AES_CMAC\n");
break;
case WLAN_CIPHER_SUITE_CCMP:
key.algo = CRYPTO_ALGO_AES_CCM;
WL_CONN("WLAN_CIPHER_SUITE_CCMP\n");
break;
default:
WL_ERR("Invalid cipher (0x%x)\n", params->cipher);
return -EINVAL;
}
convert_key_from_CPU(&key, &key_le);
brcmf_netdev_wait_pend8021x(ndev);
err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_KEY, &key_le,
sizeof(key_le));
if (err) {
WL_ERR("WLC_SET_KEY error (%d)\n", err);
return err;
}
}
return err;
}
static s32
brcmf_cfg80211_add_key(struct wiphy *wiphy, struct net_device *ndev,
u8 key_idx, bool pairwise, const u8 *mac_addr,
struct key_params *params)
{
struct brcmf_wsec_key key;
s32 val;
s32 wsec;
s32 err = 0;
u8 keybuf[8];
WL_TRACE("Enter\n");
WL_CONN("key index (%d)\n", key_idx);
if (!check_sys_up(wiphy))
return -EIO;
if (mac_addr) {
WL_TRACE("Exit");
return brcmf_add_keyext(wiphy, ndev, key_idx, mac_addr, params);
}
memset(&key, 0, sizeof(key));
key.len = (u32) params->key_len;
key.index = (u32) key_idx;
if (key.len > sizeof(key.data)) {
WL_ERR("Too long key length (%u)\n", key.len);
err = -EINVAL;
goto done;
}
memcpy(key.data, params->key, key.len);
key.flags = BRCMF_PRIMARY_KEY;
switch (params->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
key.algo = CRYPTO_ALGO_WEP1;
WL_CONN("WLAN_CIPHER_SUITE_WEP40\n");
break;
case WLAN_CIPHER_SUITE_WEP104:
key.algo = CRYPTO_ALGO_WEP128;
WL_CONN("WLAN_CIPHER_SUITE_WEP104\n");
break;
case WLAN_CIPHER_SUITE_TKIP:
memcpy(keybuf, &key.data[24], sizeof(keybuf));
memcpy(&key.data[24], &key.data[16], sizeof(keybuf));
memcpy(&key.data[16], keybuf, sizeof(keybuf));
key.algo = CRYPTO_ALGO_TKIP;
WL_CONN("WLAN_CIPHER_SUITE_TKIP\n");
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
key.algo = CRYPTO_ALGO_AES_CCM;
WL_CONN("WLAN_CIPHER_SUITE_AES_CMAC\n");
break;
case WLAN_CIPHER_SUITE_CCMP:
key.algo = CRYPTO_ALGO_AES_CCM;
WL_CONN("WLAN_CIPHER_SUITE_CCMP\n");
break;
default:
WL_ERR("Invalid cipher (0x%x)\n", params->cipher);
err = -EINVAL;
goto done;
}
err = send_key_to_dongle(ndev, &key); /* Set the new key/index */
if (err)
goto done;
val = WEP_ENABLED;
err = brcmf_dev_intvar_get(ndev, "wsec", &wsec);
if (err) {
WL_ERR("get wsec error (%d)\n", err);
goto done;
}
wsec &= ~(WEP_ENABLED);
wsec |= val;
err = brcmf_dev_intvar_set(ndev, "wsec", wsec);
if (err) {
WL_ERR("set wsec error (%d)\n", err);
goto done;
}
val = 1; /* assume shared key. otherwise 0 */
err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_AUTH, &val);
if (err)
WL_ERR("WLC_SET_AUTH error (%d)\n", err);
done:
WL_TRACE("Exit\n");
return err;
}
static s32
brcmf_cfg80211_del_key(struct wiphy *wiphy, struct net_device *ndev,
u8 key_idx, bool pairwise, const u8 *mac_addr)
{
struct brcmf_wsec_key key;
s32 err = 0;
s32 val;
s32 wsec;
WL_TRACE("Enter\n");
if (!check_sys_up(wiphy))
return -EIO;
memset(&key, 0, sizeof(key));
key.index = (u32) key_idx;
key.flags = BRCMF_PRIMARY_KEY;
key.algo = CRYPTO_ALGO_OFF;
WL_CONN("key index (%d)\n", key_idx);
/* Set the new key/index */
err = send_key_to_dongle(ndev, &key);
if (err) {
if (err == -EINVAL) {
if (key.index >= DOT11_MAX_DEFAULT_KEYS)
/* we ignore this key index in this case */
WL_ERR("invalid key index (%d)\n", key_idx);
}
/* Ignore this error, may happen during DISASSOC */
err = -EAGAIN;
goto done;
}
val = 0;
err = brcmf_dev_intvar_get(ndev, "wsec", &wsec);
if (err) {
WL_ERR("get wsec error (%d)\n", err);
/* Ignore this error, may happen during DISASSOC */
err = -EAGAIN;
goto done;
}
wsec &= ~(WEP_ENABLED);
wsec |= val;
err = brcmf_dev_intvar_set(ndev, "wsec", wsec);
if (err) {
WL_ERR("set wsec error (%d)\n", err);
/* Ignore this error, may happen during DISASSOC */
err = -EAGAIN;
goto done;
}
val = 0; /* assume open key. otherwise 1 */
err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_AUTH, &val);
if (err) {
WL_ERR("WLC_SET_AUTH error (%d)\n", err);
/* Ignore this error, may happen during DISASSOC */
err = -EAGAIN;
}
done:
WL_TRACE("Exit\n");
return err;
}
static s32
brcmf_cfg80211_get_key(struct wiphy *wiphy, struct net_device *ndev,
u8 key_idx, bool pairwise, const u8 *mac_addr, void *cookie,
void (*callback) (void *cookie, struct key_params * params))
{
struct key_params params;
struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy);
struct brcmf_cfg80211_security *sec;
s32 wsec;
s32 err = 0;
WL_TRACE("Enter\n");
WL_CONN("key index (%d)\n", key_idx);
if (!check_sys_up(wiphy))
return -EIO;
memset(&params, 0, sizeof(params));
err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_GET_WSEC, &wsec);
if (err) {
WL_ERR("WLC_GET_WSEC error (%d)\n", err);
/* Ignore this error, may happen during DISASSOC */
err = -EAGAIN;
goto done;
}
switch (wsec) {
case WEP_ENABLED:
sec = brcmf_read_prof(cfg_priv, WL_PROF_SEC);
if (sec->cipher_pairwise & WLAN_CIPHER_SUITE_WEP40) {
params.cipher = WLAN_CIPHER_SUITE_WEP40;
WL_CONN("WLAN_CIPHER_SUITE_WEP40\n");
} else if (sec->cipher_pairwise & WLAN_CIPHER_SUITE_WEP104) {
params.cipher = WLAN_CIPHER_SUITE_WEP104;
WL_CONN("WLAN_CIPHER_SUITE_WEP104\n");
}
break;
case TKIP_ENABLED:
params.cipher = WLAN_CIPHER_SUITE_TKIP;
WL_CONN("WLAN_CIPHER_SUITE_TKIP\n");
break;
case AES_ENABLED:
params.cipher = WLAN_CIPHER_SUITE_AES_CMAC;
WL_CONN("WLAN_CIPHER_SUITE_AES_CMAC\n");
break;
default:
WL_ERR("Invalid algo (0x%x)\n", wsec);
err = -EINVAL;
goto done;
}
callback(cookie, &params);
done:
WL_TRACE("Exit\n");
return err;
}
static s32
brcmf_cfg80211_config_default_mgmt_key(struct wiphy *wiphy,
struct net_device *ndev, u8 key_idx)
{
WL_INFO("Not supported\n");
return -EOPNOTSUPP;
}
static s32
brcmf_cfg80211_get_station(struct wiphy *wiphy, struct net_device *ndev,
u8 *mac, struct station_info *sinfo)
{
struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy);
struct brcmf_scb_val_le scb_val;
int rssi;
s32 rate;
s32 err = 0;
u8 *bssid = brcmf_read_prof(cfg_priv, WL_PROF_BSSID);
WL_TRACE("Enter\n");
if (!check_sys_up(wiphy))
return -EIO;
if (memcmp(mac, bssid, ETH_ALEN)) {
WL_ERR("Wrong Mac address cfg_mac-%X:%X:%X:%X:%X:%X"
"wl_bssid-%X:%X:%X:%X:%X:%X\n",
mac[0], mac[1], mac[2], mac[3], mac[4], mac[5],
bssid[0], bssid[1], bssid[2], bssid[3],
bssid[4], bssid[5]);
err = -ENOENT;
goto done;
}
/* Report the current tx rate */
err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_GET_RATE, &rate);
if (err) {
WL_ERR("Could not get rate (%d)\n", err);
} else {
sinfo->filled |= STATION_INFO_TX_BITRATE;
sinfo->txrate.legacy = rate * 5;
WL_CONN("Rate %d Mbps\n", rate / 2);
}
if (test_bit(WL_STATUS_CONNECTED, &cfg_priv->status)) {
scb_val.val = cpu_to_le32(0);
err = brcmf_exec_dcmd(ndev, BRCMF_C_GET_RSSI, &scb_val,
sizeof(struct brcmf_scb_val_le));
if (err)
WL_ERR("Could not get rssi (%d)\n", err);
rssi = le32_to_cpu(scb_val.val);
sinfo->filled |= STATION_INFO_SIGNAL;
sinfo->signal = rssi;
WL_CONN("RSSI %d dBm\n", rssi);
}
done:
WL_TRACE("Exit\n");
return err;
}
static s32
brcmf_cfg80211_set_power_mgmt(struct wiphy *wiphy, struct net_device *ndev,
bool enabled, s32 timeout)
{
s32 pm;
s32 err = 0;
struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy);
WL_TRACE("Enter\n");
/*
* Powersave enable/disable request is coming from the
* cfg80211 even before the interface is up. In that
* scenario, driver will be storing the power save
* preference in cfg_priv struct to apply this to
* FW later while initializing the dongle
*/
cfg_priv->pwr_save = enabled;
if (!test_bit(WL_STATUS_READY, &cfg_priv->status)) {
WL_INFO("Device is not ready,"
"storing the value in cfg_priv struct\n");
goto done;
}
pm = enabled ? PM_FAST : PM_OFF;
WL_INFO("power save %s\n", (pm ? "enabled" : "disabled"));
err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_PM, &pm);
if (err) {
if (err == -ENODEV)
WL_ERR("net_device is not ready yet\n");
else
WL_ERR("error (%d)\n", err);
}
done:
WL_TRACE("Exit\n");
return err;
}
static s32
brcmf_cfg80211_set_bitrate_mask(struct wiphy *wiphy, struct net_device *ndev,
const u8 *addr,
const struct cfg80211_bitrate_mask *mask)
{
struct brcm_rateset_le rateset_le;
s32 rate;
s32 val;
s32 err_bg;
s32 err_a;
u32 legacy;
s32 err = 0;
WL_TRACE("Enter\n");
if (!check_sys_up(wiphy))
return -EIO;
/* addr param is always NULL. ignore it */
/* Get current rateset */
err = brcmf_exec_dcmd(ndev, BRCM_GET_CURR_RATESET, &rateset_le,
sizeof(rateset_le));
if (err) {
WL_ERR("could not get current rateset (%d)\n", err);
goto done;
}
legacy = ffs(mask->control[IEEE80211_BAND_2GHZ].legacy & 0xFFFF);
if (!legacy)
legacy = ffs(mask->control[IEEE80211_BAND_5GHZ].legacy &
0xFFFF);
val = wl_g_rates[legacy - 1].bitrate * 100000;
if (val < le32_to_cpu(rateset_le.count))
/* Select rate by rateset index */
rate = rateset_le.rates[val] & 0x7f;
else
/* Specified rate in bps */
rate = val / 500000;
WL_CONN("rate %d mbps\n", rate / 2);
/*
*
* Set rate override,
* Since the is a/b/g-blind, both a/bg_rate are enforced.
*/
err_bg = brcmf_dev_intvar_set(ndev, "bg_rate", rate);
err_a = brcmf_dev_intvar_set(ndev, "a_rate", rate);
if (err_bg && err_a) {
WL_ERR("could not set fixed rate (%d) (%d)\n", err_bg, err_a);
err = err_bg | err_a;
}
done:
WL_TRACE("Exit\n");
return err;
}
static s32 brcmf_inform_single_bss(struct brcmf_cfg80211_priv *cfg_priv,
struct brcmf_bss_info_le *bi)
{
struct wiphy *wiphy = cfg_to_wiphy(cfg_priv);
struct ieee80211_channel *notify_channel;
struct cfg80211_bss *bss;
struct ieee80211_supported_band *band;
s32 err = 0;
u16 channel;
u32 freq;
u16 notify_capability;
u16 notify_interval;
u8 *notify_ie;
size_t notify_ielen;
s32 notify_signal;
if (le32_to_cpu(bi->length) > WL_BSS_INFO_MAX) {
WL_ERR("Bss info is larger than buffer. Discarding\n");
return 0;
}
channel = bi->ctl_ch ? bi->ctl_ch :
CHSPEC_CHANNEL(le16_to_cpu(bi->chanspec));
if (channel <= CH_MAX_2G_CHANNEL)
band = wiphy->bands[IEEE80211_BAND_2GHZ];
else
band = wiphy->bands[IEEE80211_BAND_5GHZ];
freq = ieee80211_channel_to_frequency(channel, band->band);
notify_channel = ieee80211_get_channel(wiphy, freq);
notify_capability = le16_to_cpu(bi->capability);
notify_interval = le16_to_cpu(bi->beacon_period);
notify_ie = (u8 *)bi + le16_to_cpu(bi->ie_offset);
notify_ielen = le32_to_cpu(bi->ie_length);
notify_signal = (s16)le16_to_cpu(bi->RSSI) * 100;
WL_CONN("bssid: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
bi->BSSID[0], bi->BSSID[1], bi->BSSID[2],
bi->BSSID[3], bi->BSSID[4], bi->BSSID[5]);
WL_CONN("Channel: %d(%d)\n", channel, freq);
WL_CONN("Capability: %X\n", notify_capability);
WL_CONN("Beacon interval: %d\n", notify_interval);
WL_CONN("Signal: %d\n", notify_signal);
bss = cfg80211_inform_bss(wiphy, notify_channel, (const u8 *)bi->BSSID,
0, notify_capability, notify_interval, notify_ie,
notify_ielen, notify_signal, GFP_KERNEL);
if (!bss)
return -ENOMEM;
cfg80211_put_bss(bss);
return err;
}
static struct brcmf_bss_info_le *
next_bss_le(struct brcmf_scan_results *list, struct brcmf_bss_info_le *bss)
{
if (bss == NULL)
return list->bss_info_le;
return (struct brcmf_bss_info_le *)((unsigned long)bss +
le32_to_cpu(bss->length));
}
static s32 brcmf_inform_bss(struct brcmf_cfg80211_priv *cfg_priv)
{
struct brcmf_scan_results *bss_list;
struct brcmf_bss_info_le *bi = NULL; /* must be initialized */
s32 err = 0;
int i;
bss_list = cfg_priv->bss_list;
if (bss_list->version != BRCMF_BSS_INFO_VERSION) {
WL_ERR("Version %d != WL_BSS_INFO_VERSION\n",
bss_list->version);
return -EOPNOTSUPP;
}
WL_SCAN("scanned AP count (%d)\n", bss_list->count);
for (i = 0; i < bss_list->count && i < WL_AP_MAX; i++) {
bi = next_bss_le(bss_list, bi);
err = brcmf_inform_single_bss(cfg_priv, bi);
if (err)
break;
}
return err;
}
static s32 wl_inform_ibss(struct brcmf_cfg80211_priv *cfg_priv,
struct net_device *ndev, const u8 *bssid)
{
struct wiphy *wiphy = cfg_to_wiphy(cfg_priv);
struct ieee80211_channel *notify_channel;
struct brcmf_bss_info_le *bi = NULL;
struct ieee80211_supported_band *band;
struct cfg80211_bss *bss;
u8 *buf = NULL;
s32 err = 0;
u16 channel;
u32 freq;
u16 notify_capability;
u16 notify_interval;
u8 *notify_ie;
size_t notify_ielen;
s32 notify_signal;
WL_TRACE("Enter\n");
buf = kzalloc(WL_BSS_INFO_MAX, GFP_KERNEL);
if (buf == NULL) {
err = -ENOMEM;
goto CleanUp;
}
*(__le32 *)buf = cpu_to_le32(WL_BSS_INFO_MAX);
err = brcmf_exec_dcmd(ndev, BRCMF_C_GET_BSS_INFO, buf, WL_BSS_INFO_MAX);
if (err) {
WL_ERR("WLC_GET_BSS_INFO failed: %d\n", err);
goto CleanUp;
}
bi = (struct brcmf_bss_info_le *)(buf + 4);
channel = bi->ctl_ch ? bi->ctl_ch :
CHSPEC_CHANNEL(le16_to_cpu(bi->chanspec));
if (channel <= CH_MAX_2G_CHANNEL)
band = wiphy->bands[IEEE80211_BAND_2GHZ];
else
band = wiphy->bands[IEEE80211_BAND_5GHZ];
freq = ieee80211_channel_to_frequency(channel, band->band);
notify_channel = ieee80211_get_channel(wiphy, freq);
notify_capability = le16_to_cpu(bi->capability);
notify_interval = le16_to_cpu(bi->beacon_period);
notify_ie = (u8 *)bi + le16_to_cpu(bi->ie_offset);
notify_ielen = le32_to_cpu(bi->ie_length);
notify_signal = (s16)le16_to_cpu(bi->RSSI) * 100;
WL_CONN("channel: %d(%d)\n", channel, freq);
WL_CONN("capability: %X\n", notify_capability);
WL_CONN("beacon interval: %d\n", notify_interval);
WL_CONN("signal: %d\n", notify_signal);
bss = cfg80211_inform_bss(wiphy, notify_channel, bssid,
0, notify_capability, notify_interval,
notify_ie, notify_ielen, notify_signal, GFP_KERNEL);
if (!bss) {
err = -ENOMEM;
goto CleanUp;
}
cfg80211_put_bss(bss);
CleanUp:
kfree(buf);
WL_TRACE("Exit\n");
return err;
}
static bool brcmf_is_ibssmode(struct brcmf_cfg80211_priv *cfg_priv)
{
return cfg_priv->conf->mode == WL_MODE_IBSS;
}
/*
* Traverse a string of 1-byte tag/1-byte length/variable-length value
* triples, returning a pointer to the substring whose first element
* matches tag
*/
static struct brcmf_tlv *brcmf_parse_tlvs(void *buf, int buflen, uint key)
{
struct brcmf_tlv *elt;
int totlen;
elt = (struct brcmf_tlv *) buf;
totlen = buflen;
/* find tagged parameter */
while (totlen >= 2) {
int len = elt->len;
/* validate remaining totlen */
if ((elt->id == key) && (totlen >= (len + 2)))
return elt;
elt = (struct brcmf_tlv *) ((u8 *) elt + (len + 2));
totlen -= (len + 2);
}
return NULL;
}
static s32 brcmf_update_bss_info(struct brcmf_cfg80211_priv *cfg_priv)
{
struct brcmf_bss_info_le *bi;
struct brcmf_ssid *ssid;
struct brcmf_tlv *tim;
u16 beacon_interval;
u8 dtim_period;
size_t ie_len;
u8 *ie;
s32 err = 0;
WL_TRACE("Enter\n");
if (brcmf_is_ibssmode(cfg_priv))
return err;
ssid = (struct brcmf_ssid *)brcmf_read_prof(cfg_priv, WL_PROF_SSID);
*(__le32 *)cfg_priv->extra_buf = cpu_to_le32(WL_EXTRA_BUF_MAX);
err = brcmf_exec_dcmd(cfg_to_ndev(cfg_priv), BRCMF_C_GET_BSS_INFO,
cfg_priv->extra_buf, WL_EXTRA_BUF_MAX);
if (err) {
WL_ERR("Could not get bss info %d\n", err);
goto update_bss_info_out;
}
bi = (struct brcmf_bss_info_le *)(cfg_priv->extra_buf + 4);
err = brcmf_inform_single_bss(cfg_priv, bi);
if (err)
goto update_bss_info_out;
ie = ((u8 *)bi) + le16_to_cpu(bi->ie_offset);
ie_len = le32_to_cpu(bi->ie_length);
beacon_interval = le16_to_cpu(bi->beacon_period);
tim = brcmf_parse_tlvs(ie, ie_len, WLAN_EID_TIM);
if (tim)
dtim_period = tim->data[1];
else {
/*
* active scan was done so we could not get dtim
* information out of probe response.
* so we speficially query dtim information to dongle.
*/
u32 var;
err = brcmf_dev_intvar_get(cfg_to_ndev(cfg_priv),
"dtim_assoc", &var);
if (err) {
WL_ERR("wl dtim_assoc failed (%d)\n", err);
goto update_bss_info_out;
}
dtim_period = (u8)var;
}
brcmf_update_prof(cfg_priv, NULL, &beacon_interval, WL_PROF_BEACONINT);
brcmf_update_prof(cfg_priv, NULL, &dtim_period, WL_PROF_DTIMPERIOD);
update_bss_info_out:
WL_TRACE("Exit");
return err;
}
static void brcmf_term_iscan(struct brcmf_cfg80211_priv *cfg_priv)
{
struct brcmf_cfg80211_iscan_ctrl *iscan = cfg_to_iscan(cfg_priv);
struct brcmf_ssid ssid;
if (cfg_priv->iscan_on) {
iscan->state = WL_ISCAN_STATE_IDLE;
if (iscan->timer_on) {
del_timer_sync(&iscan->timer);
iscan->timer_on = 0;
}
cancel_work_sync(&iscan->work);
/* Abort iscan running in FW */
memset(&ssid, 0, sizeof(ssid));
brcmf_run_iscan(iscan, &ssid, WL_SCAN_ACTION_ABORT);
}
}
static void brcmf_notify_iscan_complete(struct brcmf_cfg80211_iscan_ctrl *iscan,
bool aborted)
{
struct brcmf_cfg80211_priv *cfg_priv = iscan_to_cfg(iscan);
struct net_device *ndev = cfg_to_ndev(cfg_priv);
if (!test_and_clear_bit(WL_STATUS_SCANNING, &cfg_priv->status)) {
WL_ERR("Scan complete while device not scanning\n");
return;
}
if (cfg_priv->scan_request) {
WL_SCAN("ISCAN Completed scan: %s\n",
aborted ? "Aborted" : "Done");
cfg80211_scan_done(cfg_priv->scan_request, aborted);
brcmf_set_mpc(ndev, 1);
cfg_priv->scan_request = NULL;
}
cfg_priv->iscan_kickstart = false;
}
static s32 brcmf_wakeup_iscan(struct brcmf_cfg80211_iscan_ctrl *iscan)
{
if (iscan->state != WL_ISCAN_STATE_IDLE) {
WL_SCAN("wake up iscan\n");
schedule_work(&iscan->work);
return 0;
}
return -EIO;
}
static s32
brcmf_get_iscan_results(struct brcmf_cfg80211_iscan_ctrl *iscan, u32 *status,
struct brcmf_scan_results **bss_list)
{
struct brcmf_iscan_results list;
struct brcmf_scan_results *results;
struct brcmf_scan_results_le *results_le;
struct brcmf_iscan_results *list_buf;
s32 err = 0;
memset(iscan->scan_buf, 0, WL_ISCAN_BUF_MAX);
list_buf = (struct brcmf_iscan_results *)iscan->scan_buf;
results = &list_buf->results;
results_le = &list_buf->results_le;
results->buflen = BRCMF_ISCAN_RESULTS_FIXED_SIZE;
results->version = 0;
results->count = 0;
memset(&list, 0, sizeof(list));
list.results_le.buflen = cpu_to_le32(WL_ISCAN_BUF_MAX);
err = brcmf_dev_iovar_getbuf(iscan->ndev, "iscanresults", &list,
BRCMF_ISCAN_RESULTS_FIXED_SIZE,
iscan->scan_buf, WL_ISCAN_BUF_MAX);
if (err) {
WL_ERR("error (%d)\n", err);
return err;
}
results->buflen = le32_to_cpu(results_le->buflen);
results->version = le32_to_cpu(results_le->version);
results->count = le32_to_cpu(results_le->count);
WL_SCAN("results->count = %d\n", results_le->count);
WL_SCAN("results->buflen = %d\n", results_le->buflen);
*status = le32_to_cpu(list_buf->status_le);
WL_SCAN("status = %d\n", *status);
*bss_list = results;
return err;
}
static s32 brcmf_iscan_done(struct brcmf_cfg80211_priv *cfg_priv)
{
struct brcmf_cfg80211_iscan_ctrl *iscan = cfg_priv->iscan;
s32 err = 0;
iscan->state = WL_ISCAN_STATE_IDLE;
brcmf_inform_bss(cfg_priv);
brcmf_notify_iscan_complete(iscan, false);
return err;
}
static s32 brcmf_iscan_pending(struct brcmf_cfg80211_priv *cfg_priv)
{
struct brcmf_cfg80211_iscan_ctrl *iscan = cfg_priv->iscan;
s32 err = 0;
/* Reschedule the timer */
mod_timer(&iscan->timer, jiffies + iscan->timer_ms * HZ / 1000);
iscan->timer_on = 1;
return err;
}
static s32 brcmf_iscan_inprogress(struct brcmf_cfg80211_priv *cfg_priv)
{
struct brcmf_cfg80211_iscan_ctrl *iscan = cfg_priv->iscan;
s32 err = 0;
brcmf_inform_bss(cfg_priv);
brcmf_run_iscan(iscan, NULL, BRCMF_SCAN_ACTION_CONTINUE);
/* Reschedule the timer */
mod_timer(&iscan->timer, jiffies + iscan->timer_ms * HZ / 1000);
iscan->timer_on = 1;
return err;
}
static s32 brcmf_iscan_aborted(struct brcmf_cfg80211_priv *cfg_priv)
{
struct brcmf_cfg80211_iscan_ctrl *iscan = cfg_priv->iscan;
s32 err = 0;
iscan->state = WL_ISCAN_STATE_IDLE;
brcmf_notify_iscan_complete(iscan, true);
return err;
}
static void brcmf_cfg80211_iscan_handler(struct work_struct *work)
{
struct brcmf_cfg80211_iscan_ctrl *iscan =
container_of(work, struct brcmf_cfg80211_iscan_ctrl,
work);
struct brcmf_cfg80211_priv *cfg_priv = iscan_to_cfg(iscan);
struct brcmf_cfg80211_iscan_eloop *el = &iscan->el;
u32 status = BRCMF_SCAN_RESULTS_PARTIAL;
if (iscan->timer_on) {
del_timer_sync(&iscan->timer);
iscan->timer_on = 0;
}
if (brcmf_get_iscan_results(iscan, &status, &cfg_priv->bss_list)) {
status = BRCMF_SCAN_RESULTS_ABORTED;
WL_ERR("Abort iscan\n");
}
el->handler[status](cfg_priv);
}
static void brcmf_iscan_timer(unsigned long data)
{
struct brcmf_cfg80211_iscan_ctrl *iscan =
(struct brcmf_cfg80211_iscan_ctrl *)data;
if (iscan) {
iscan->timer_on = 0;
WL_SCAN("timer expired\n");
brcmf_wakeup_iscan(iscan);
}
}
static s32 brcmf_invoke_iscan(struct brcmf_cfg80211_priv *cfg_priv)
{
struct brcmf_cfg80211_iscan_ctrl *iscan = cfg_to_iscan(cfg_priv);
if (cfg_priv->iscan_on) {
iscan->state = WL_ISCAN_STATE_IDLE;
INIT_WORK(&iscan->work, brcmf_cfg80211_iscan_handler);
}
return 0;
}
static void brcmf_init_iscan_eloop(struct brcmf_cfg80211_iscan_eloop *el)
{
memset(el, 0, sizeof(*el));
el->handler[BRCMF_SCAN_RESULTS_SUCCESS] = brcmf_iscan_done;
el->handler[BRCMF_SCAN_RESULTS_PARTIAL] = brcmf_iscan_inprogress;
el->handler[BRCMF_SCAN_RESULTS_PENDING] = brcmf_iscan_pending;
el->handler[BRCMF_SCAN_RESULTS_ABORTED] = brcmf_iscan_aborted;
el->handler[BRCMF_SCAN_RESULTS_NO_MEM] = brcmf_iscan_aborted;
}
static s32 brcmf_init_iscan(struct brcmf_cfg80211_priv *cfg_priv)
{
struct brcmf_cfg80211_iscan_ctrl *iscan = cfg_to_iscan(cfg_priv);
int err = 0;
if (cfg_priv->iscan_on) {
iscan->ndev = cfg_to_ndev(cfg_priv);
brcmf_init_iscan_eloop(&iscan->el);
iscan->timer_ms = WL_ISCAN_TIMER_INTERVAL_MS;
init_timer(&iscan->timer);
iscan->timer.data = (unsigned long) iscan;
iscan->timer.function = brcmf_iscan_timer;
err = brcmf_invoke_iscan(cfg_priv);
if (!err)
iscan->data = cfg_priv;
}
return err;
}
static __always_inline void brcmf_delay(u32 ms)
{
if (ms < 1000 / HZ) {
cond_resched();
mdelay(ms);
} else {
msleep(ms);
}
}
static s32 brcmf_cfg80211_resume(struct wiphy *wiphy)
{
struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy);
/*
* Check for WL_STATUS_READY before any function call which
* could result is bus access. Don't block the resume for
* any driver error conditions
*/
WL_TRACE("Enter\n");
if (test_bit(WL_STATUS_READY, &cfg_priv->status))
brcmf_invoke_iscan(wiphy_to_cfg(wiphy));
WL_TRACE("Exit\n");
return 0;
}
static s32 brcmf_cfg80211_suspend(struct wiphy *wiphy,
struct cfg80211_wowlan *wow)
{
struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy);
struct net_device *ndev = cfg_to_ndev(cfg_priv);
WL_TRACE("Enter\n");
/*
* Check for WL_STATUS_READY before any function call which
* could result is bus access. Don't block the suspend for
* any driver error conditions
*/
/*
* While going to suspend if associated with AP disassociate
* from AP to save power while system is in suspended state
*/
if ((test_bit(WL_STATUS_CONNECTED, &cfg_priv->status) ||
test_bit(WL_STATUS_CONNECTING, &cfg_priv->status)) &&
test_bit(WL_STATUS_READY, &cfg_priv->status)) {
WL_INFO("Disassociating from AP"
" while entering suspend state\n");
brcmf_link_down(cfg_priv);
/*
* Make sure WPA_Supplicant receives all the event
* generated due to DISASSOC call to the fw to keep
* the state fw and WPA_Supplicant state consistent
*/
brcmf_delay(500);
}
set_bit(WL_STATUS_SCAN_ABORTING, &cfg_priv->status);
if (test_bit(WL_STATUS_READY, &cfg_priv->status))
brcmf_term_iscan(cfg_priv);
if (cfg_priv->scan_request) {
/* Indidate scan abort to cfg80211 layer */
WL_INFO("Terminating scan in progress\n");
cfg80211_scan_done(cfg_priv->scan_request, true);
cfg_priv->scan_request = NULL;
}
clear_bit(WL_STATUS_SCANNING, &cfg_priv->status);
clear_bit(WL_STATUS_SCAN_ABORTING, &cfg_priv->status);
/* Turn off watchdog timer */
if (test_bit(WL_STATUS_READY, &cfg_priv->status)) {
WL_INFO("Enable MPC\n");
brcmf_set_mpc(ndev, 1);
}
WL_TRACE("Exit\n");
return 0;
}
static __used s32
brcmf_dev_bufvar_set(struct net_device *ndev, s8 *name, s8 *buf, s32 len)
{
struct brcmf_cfg80211_priv *cfg_priv = ndev_to_cfg(ndev);
u32 buflen;
buflen = brcmf_c_mkiovar(name, buf, len, cfg_priv->dcmd_buf,
WL_DCMD_LEN_MAX);
BUG_ON(!buflen);
return brcmf_exec_dcmd(ndev, BRCMF_C_SET_VAR, cfg_priv->dcmd_buf,
buflen);
}
static s32
brcmf_dev_bufvar_get(struct net_device *ndev, s8 *name, s8 *buf,
s32 buf_len)
{
struct brcmf_cfg80211_priv *cfg_priv = ndev_to_cfg(ndev);
u32 len;
s32 err = 0;
len = brcmf_c_mkiovar(name, NULL, 0, cfg_priv->dcmd_buf,
WL_DCMD_LEN_MAX);
BUG_ON(!len);
err = brcmf_exec_dcmd(ndev, BRCMF_C_GET_VAR, cfg_priv->dcmd_buf,
WL_DCMD_LEN_MAX);
if (err) {
WL_ERR("error (%d)\n", err);
return err;
}
memcpy(buf, cfg_priv->dcmd_buf, buf_len);
return err;
}
static __used s32
brcmf_update_pmklist(struct net_device *ndev,
struct brcmf_cfg80211_pmk_list *pmk_list, s32 err)
{
int i, j;
int pmkid_len;
pmkid_len = le32_to_cpu(pmk_list->pmkids.npmkid);
WL_CONN("No of elements %d\n", pmkid_len);
for (i = 0; i < pmkid_len; i++) {
WL_CONN("PMKID[%d]: %pM =\n", i,
&pmk_list->pmkids.pmkid[i].BSSID);
for (j = 0; j < WLAN_PMKID_LEN; j++)
WL_CONN("%02x\n", pmk_list->pmkids.pmkid[i].PMKID[j]);
}
if (!err)
brcmf_dev_bufvar_set(ndev, "pmkid_info", (char *)pmk_list,
sizeof(*pmk_list));
return err;
}
static s32
brcmf_cfg80211_set_pmksa(struct wiphy *wiphy, struct net_device *ndev,
struct cfg80211_pmksa *pmksa)
{
struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy);
struct pmkid_list *pmkids = &cfg_priv->pmk_list->pmkids;
s32 err = 0;
int i;
int pmkid_len;
WL_TRACE("Enter\n");
if (!check_sys_up(wiphy))
return -EIO;
pmkid_len = le32_to_cpu(pmkids->npmkid);
for (i = 0; i < pmkid_len; i++)
if (!memcmp(pmksa->bssid, pmkids->pmkid[i].BSSID, ETH_ALEN))
break;
if (i < WL_NUM_PMKIDS_MAX) {
memcpy(pmkids->pmkid[i].BSSID, pmksa->bssid, ETH_ALEN);
memcpy(pmkids->pmkid[i].PMKID, pmksa->pmkid, WLAN_PMKID_LEN);
if (i == pmkid_len) {
pmkid_len++;
pmkids->npmkid = cpu_to_le32(pmkid_len);
}
} else
err = -EINVAL;
WL_CONN("set_pmksa,IW_PMKSA_ADD - PMKID: %pM =\n",
pmkids->pmkid[pmkid_len].BSSID);
for (i = 0; i < WLAN_PMKID_LEN; i++)
WL_CONN("%02x\n", pmkids->pmkid[pmkid_len].PMKID[i]);
err = brcmf_update_pmklist(ndev, cfg_priv->pmk_list, err);
WL_TRACE("Exit\n");
return err;
}
static s32
brcmf_cfg80211_del_pmksa(struct wiphy *wiphy, struct net_device *ndev,
struct cfg80211_pmksa *pmksa)
{
struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy);
struct pmkid_list pmkid;
s32 err = 0;
int i, pmkid_len;
WL_TRACE("Enter\n");
if (!check_sys_up(wiphy))
return -EIO;
memcpy(&pmkid.pmkid[0].BSSID, pmksa->bssid, ETH_ALEN);
memcpy(&pmkid.pmkid[0].PMKID, pmksa->pmkid, WLAN_PMKID_LEN);
WL_CONN("del_pmksa,IW_PMKSA_REMOVE - PMKID: %pM =\n",
&pmkid.pmkid[0].BSSID);
for (i = 0; i < WLAN_PMKID_LEN; i++)
WL_CONN("%02x\n", pmkid.pmkid[0].PMKID[i]);
pmkid_len = le32_to_cpu(cfg_priv->pmk_list->pmkids.npmkid);
for (i = 0; i < pmkid_len; i++)
if (!memcmp
(pmksa->bssid, &cfg_priv->pmk_list->pmkids.pmkid[i].BSSID,
ETH_ALEN))
break;
if ((pmkid_len > 0)
&& (i < pmkid_len)) {
memset(&cfg_priv->pmk_list->pmkids.pmkid[i], 0,
sizeof(struct pmkid));
for (; i < (pmkid_len - 1); i++) {
memcpy(&cfg_priv->pmk_list->pmkids.pmkid[i].BSSID,
&cfg_priv->pmk_list->pmkids.pmkid[i + 1].BSSID,
ETH_ALEN);
memcpy(&cfg_priv->pmk_list->pmkids.pmkid[i].PMKID,
&cfg_priv->pmk_list->pmkids.pmkid[i + 1].PMKID,
WLAN_PMKID_LEN);
}
cfg_priv->pmk_list->pmkids.npmkid = cpu_to_le32(pmkid_len - 1);
} else
err = -EINVAL;
err = brcmf_update_pmklist(ndev, cfg_priv->pmk_list, err);
WL_TRACE("Exit\n");
return err;
}
static s32
brcmf_cfg80211_flush_pmksa(struct wiphy *wiphy, struct net_device *ndev)
{
struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy);
s32 err = 0;
WL_TRACE("Enter\n");
if (!check_sys_up(wiphy))
return -EIO;
memset(cfg_priv->pmk_list, 0, sizeof(*cfg_priv->pmk_list));
err = brcmf_update_pmklist(ndev, cfg_priv->pmk_list, err);
WL_TRACE("Exit\n");
return err;
}
static struct cfg80211_ops wl_cfg80211_ops = {
.change_virtual_intf = brcmf_cfg80211_change_iface,
.scan = brcmf_cfg80211_scan,
.set_wiphy_params = brcmf_cfg80211_set_wiphy_params,
.join_ibss = brcmf_cfg80211_join_ibss,
.leave_ibss = brcmf_cfg80211_leave_ibss,
.get_station = brcmf_cfg80211_get_station,
.set_tx_power = brcmf_cfg80211_set_tx_power,
.get_tx_power = brcmf_cfg80211_get_tx_power,
.add_key = brcmf_cfg80211_add_key,
.del_key = brcmf_cfg80211_del_key,
.get_key = brcmf_cfg80211_get_key,
.set_default_key = brcmf_cfg80211_config_default_key,
.set_default_mgmt_key = brcmf_cfg80211_config_default_mgmt_key,
.set_power_mgmt = brcmf_cfg80211_set_power_mgmt,
.set_bitrate_mask = brcmf_cfg80211_set_bitrate_mask,
.connect = brcmf_cfg80211_connect,
.disconnect = brcmf_cfg80211_disconnect,
.suspend = brcmf_cfg80211_suspend,
.resume = brcmf_cfg80211_resume,
.set_pmksa = brcmf_cfg80211_set_pmksa,
.del_pmksa = brcmf_cfg80211_del_pmksa,
.flush_pmksa = brcmf_cfg80211_flush_pmksa
};
static s32 brcmf_mode_to_nl80211_iftype(s32 mode)
{
s32 err = 0;
switch (mode) {
case WL_MODE_BSS:
return NL80211_IFTYPE_STATION;
case WL_MODE_IBSS:
return NL80211_IFTYPE_ADHOC;
default:
return NL80211_IFTYPE_UNSPECIFIED;
}
return err;
}
static struct wireless_dev *brcmf_alloc_wdev(s32 sizeof_iface,
struct device *ndev)
{
struct wireless_dev *wdev;
s32 err = 0;
wdev = kzalloc(sizeof(*wdev), GFP_KERNEL);
if (!wdev)
return ERR_PTR(-ENOMEM);
wdev->wiphy =
wiphy_new(&wl_cfg80211_ops,
sizeof(struct brcmf_cfg80211_priv) + sizeof_iface);
if (!wdev->wiphy) {
WL_ERR("Could not allocate wiphy device\n");
err = -ENOMEM;
goto wiphy_new_out;
}
set_wiphy_dev(wdev->wiphy, ndev);
wdev->wiphy->max_scan_ssids = WL_NUM_SCAN_MAX;
wdev->wiphy->max_num_pmkids = WL_NUM_PMKIDS_MAX;
wdev->wiphy->interface_modes =
BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC);
wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = &__wl_band_2ghz;
wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = &__wl_band_5ghz_a; /* Set
* it as 11a by default.
* This will be updated with
* 11n phy tables in
* "ifconfig up"
* if phy has 11n capability
*/
wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
wdev->wiphy->cipher_suites = __wl_cipher_suites;
wdev->wiphy->n_cipher_suites = ARRAY_SIZE(__wl_cipher_suites);
wdev->wiphy->flags |= WIPHY_FLAG_PS_ON_BY_DEFAULT; /* enable power
* save mode
* by default
*/
err = wiphy_register(wdev->wiphy);
if (err < 0) {
WL_ERR("Could not register wiphy device (%d)\n", err);
goto wiphy_register_out;
}
return wdev;
wiphy_register_out:
wiphy_free(wdev->wiphy);
wiphy_new_out:
kfree(wdev);
return ERR_PTR(err);
}
static void brcmf_free_wdev(struct brcmf_cfg80211_priv *cfg_priv)
{
struct wireless_dev *wdev = cfg_priv->wdev;
if (!wdev) {
WL_ERR("wdev is invalid\n");
return;
}
wiphy_unregister(wdev->wiphy);
wiphy_free(wdev->wiphy);
kfree(wdev);
cfg_priv->wdev = NULL;
}
static bool brcmf_is_linkup(struct brcmf_cfg80211_priv *cfg_priv,
const struct brcmf_event_msg *e)
{
u32 event = be32_to_cpu(e->event_type);
u32 status = be32_to_cpu(e->status);
if (event == BRCMF_E_SET_SSID && status == BRCMF_E_STATUS_SUCCESS) {
WL_CONN("Processing set ssid\n");
cfg_priv->link_up = true;
return true;
}
return false;
}
static bool brcmf_is_linkdown(struct brcmf_cfg80211_priv *cfg_priv,
const struct brcmf_event_msg *e)
{
u32 event = be32_to_cpu(e->event_type);
u16 flags = be16_to_cpu(e->flags);
if (event == BRCMF_E_LINK && (!(flags & BRCMF_EVENT_MSG_LINK))) {
WL_CONN("Processing link down\n");
return true;
}
return false;
}
static bool brcmf_is_nonetwork(struct brcmf_cfg80211_priv *cfg_priv,
const struct brcmf_event_msg *e)
{
u32 event = be32_to_cpu(e->event_type);
u32 status = be32_to_cpu(e->status);
if (event == BRCMF_E_LINK && status == BRCMF_E_STATUS_NO_NETWORKS) {
WL_CONN("Processing Link %s & no network found\n",
be16_to_cpu(e->flags) & BRCMF_EVENT_MSG_LINK ?
"up" : "down");
return true;
}
if (event == BRCMF_E_SET_SSID && status != BRCMF_E_STATUS_SUCCESS) {
WL_CONN("Processing connecting & no network found\n");
return true;
}
return false;
}
static void brcmf_clear_assoc_ies(struct brcmf_cfg80211_priv *cfg_priv)
{
struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg_priv);
kfree(conn_info->req_ie);
conn_info->req_ie = NULL;
conn_info->req_ie_len = 0;
kfree(conn_info->resp_ie);
conn_info->resp_ie = NULL;
conn_info->resp_ie_len = 0;
}
static s32 brcmf_get_assoc_ies(struct brcmf_cfg80211_priv *cfg_priv)
{
struct net_device *ndev = cfg_to_ndev(cfg_priv);
struct brcmf_cfg80211_assoc_ielen_le *assoc_info;
struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg_priv);
u32 req_len;
u32 resp_len;
s32 err = 0;
brcmf_clear_assoc_ies(cfg_priv);
err = brcmf_dev_bufvar_get(ndev, "assoc_info", cfg_priv->extra_buf,
WL_ASSOC_INFO_MAX);
if (err) {
WL_ERR("could not get assoc info (%d)\n", err);
return err;
}
assoc_info =
(struct brcmf_cfg80211_assoc_ielen_le *)cfg_priv->extra_buf;
req_len = le32_to_cpu(assoc_info->req_len);
resp_len = le32_to_cpu(assoc_info->resp_len);
if (req_len) {
err = brcmf_dev_bufvar_get(ndev, "assoc_req_ies",
cfg_priv->extra_buf,
WL_ASSOC_INFO_MAX);
if (err) {
WL_ERR("could not get assoc req (%d)\n", err);
return err;
}
conn_info->req_ie_len = req_len;
conn_info->req_ie =
kmemdup(cfg_priv->extra_buf, conn_info->req_ie_len,
GFP_KERNEL);
} else {
conn_info->req_ie_len = 0;
conn_info->req_ie = NULL;
}
if (resp_len) {
err = brcmf_dev_bufvar_get(ndev, "assoc_resp_ies",
cfg_priv->extra_buf,
WL_ASSOC_INFO_MAX);
if (err) {
WL_ERR("could not get assoc resp (%d)\n", err);
return err;
}
conn_info->resp_ie_len = resp_len;
conn_info->resp_ie =
kmemdup(cfg_priv->extra_buf, conn_info->resp_ie_len,
GFP_KERNEL);
} else {
conn_info->resp_ie_len = 0;
conn_info->resp_ie = NULL;
}
WL_CONN("req len (%d) resp len (%d)\n",
conn_info->req_ie_len, conn_info->resp_ie_len);
return err;
}
static s32
brcmf_bss_roaming_done(struct brcmf_cfg80211_priv *cfg_priv,
struct net_device *ndev,
const struct brcmf_event_msg *e)
{
struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg_priv);
struct wiphy *wiphy = cfg_to_wiphy(cfg_priv);
struct brcmf_channel_info_le channel_le;
struct ieee80211_channel *notify_channel;
struct ieee80211_supported_band *band;
u32 freq;
s32 err = 0;
u32 target_channel;
WL_TRACE("Enter\n");
brcmf_get_assoc_ies(cfg_priv);
brcmf_update_prof(cfg_priv, NULL, &e->addr, WL_PROF_BSSID);
brcmf_update_bss_info(cfg_priv);
brcmf_exec_dcmd(ndev, BRCMF_C_GET_CHANNEL, &channel_le,
sizeof(channel_le));
target_channel = le32_to_cpu(channel_le.target_channel);
WL_CONN("Roamed to channel %d\n", target_channel);
if (target_channel <= CH_MAX_2G_CHANNEL)
band = wiphy->bands[IEEE80211_BAND_2GHZ];
else
band = wiphy->bands[IEEE80211_BAND_5GHZ];
freq = ieee80211_channel_to_frequency(target_channel, band->band);
notify_channel = ieee80211_get_channel(wiphy, freq);
cfg80211_roamed(ndev, notify_channel,
(u8 *)brcmf_read_prof(cfg_priv, WL_PROF_BSSID),
conn_info->req_ie, conn_info->req_ie_len,
conn_info->resp_ie, conn_info->resp_ie_len, GFP_KERNEL);
WL_CONN("Report roaming result\n");
set_bit(WL_STATUS_CONNECTED, &cfg_priv->status);
WL_TRACE("Exit\n");
return err;
}
static s32
brcmf_bss_connect_done(struct brcmf_cfg80211_priv *cfg_priv,
struct net_device *ndev, const struct brcmf_event_msg *e,
bool completed)
{
struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg_priv);
s32 err = 0;
WL_TRACE("Enter\n");
if (test_and_clear_bit(WL_STATUS_CONNECTING, &cfg_priv->status)) {
if (completed) {
brcmf_get_assoc_ies(cfg_priv);
brcmf_update_prof(cfg_priv, NULL, &e->addr,
WL_PROF_BSSID);
brcmf_update_bss_info(cfg_priv);
}
cfg80211_connect_result(ndev,
(u8 *)brcmf_read_prof(cfg_priv,
WL_PROF_BSSID),
conn_info->req_ie,
conn_info->req_ie_len,
conn_info->resp_ie,
conn_info->resp_ie_len,
completed ? WLAN_STATUS_SUCCESS :
WLAN_STATUS_AUTH_TIMEOUT,
GFP_KERNEL);
if (completed)
set_bit(WL_STATUS_CONNECTED, &cfg_priv->status);
WL_CONN("Report connect result - connection %s\n",
completed ? "succeeded" : "failed");
}
WL_TRACE("Exit\n");
return err;
}
static s32
brcmf_notify_connect_status(struct brcmf_cfg80211_priv *cfg_priv,
struct net_device *ndev,
const struct brcmf_event_msg *e, void *data)
{
s32 err = 0;
if (brcmf_is_linkup(cfg_priv, e)) {
WL_CONN("Linkup\n");
if (brcmf_is_ibssmode(cfg_priv)) {
brcmf_update_prof(cfg_priv, NULL, (void *)e->addr,
WL_PROF_BSSID);
wl_inform_ibss(cfg_priv, ndev, e->addr);
cfg80211_ibss_joined(ndev, e->addr, GFP_KERNEL);
clear_bit(WL_STATUS_CONNECTING, &cfg_priv->status);
set_bit(WL_STATUS_CONNECTED, &cfg_priv->status);
} else
brcmf_bss_connect_done(cfg_priv, ndev, e, true);
} else if (brcmf_is_linkdown(cfg_priv, e)) {
WL_CONN("Linkdown\n");
if (brcmf_is_ibssmode(cfg_priv)) {
clear_bit(WL_STATUS_CONNECTING, &cfg_priv->status);
if (test_and_clear_bit(WL_STATUS_CONNECTED,
&cfg_priv->status))
brcmf_link_down(cfg_priv);
} else {
brcmf_bss_connect_done(cfg_priv, ndev, e, false);
if (test_and_clear_bit(WL_STATUS_CONNECTED,
&cfg_priv->status)) {
cfg80211_disconnected(ndev, 0, NULL, 0,
GFP_KERNEL);
brcmf_link_down(cfg_priv);
}
}
brcmf_init_prof(cfg_priv->profile);
} else if (brcmf_is_nonetwork(cfg_priv, e)) {
if (brcmf_is_ibssmode(cfg_priv))
clear_bit(WL_STATUS_CONNECTING, &cfg_priv->status);
else
brcmf_bss_connect_done(cfg_priv, ndev, e, false);
}
return err;
}
static s32
brcmf_notify_roaming_status(struct brcmf_cfg80211_priv *cfg_priv,
struct net_device *ndev,
const struct brcmf_event_msg *e, void *data)
{
s32 err = 0;
u32 event = be32_to_cpu(e->event_type);
u32 status = be32_to_cpu(e->status);
if (event == BRCMF_E_ROAM && status == BRCMF_E_STATUS_SUCCESS) {
if (test_bit(WL_STATUS_CONNECTED, &cfg_priv->status))
brcmf_bss_roaming_done(cfg_priv, ndev, e);
else
brcmf_bss_connect_done(cfg_priv, ndev, e, true);
}
return err;
}
static s32
brcmf_notify_mic_status(struct brcmf_cfg80211_priv *cfg_priv,
struct net_device *ndev,
const struct brcmf_event_msg *e, void *data)
{
u16 flags = be16_to_cpu(e->flags);
enum nl80211_key_type key_type;
if (flags & BRCMF_EVENT_MSG_GROUP)
key_type = NL80211_KEYTYPE_GROUP;
else
key_type = NL80211_KEYTYPE_PAIRWISE;
cfg80211_michael_mic_failure(ndev, (u8 *)&e->addr, key_type, -1,
NULL, GFP_KERNEL);
return 0;
}
static s32
brcmf_notify_scan_status(struct brcmf_cfg80211_priv *cfg_priv,
struct net_device *ndev,
const struct brcmf_event_msg *e, void *data)
{
struct brcmf_channel_info_le channel_inform_le;
struct brcmf_scan_results_le *bss_list_le;
u32 len = WL_SCAN_BUF_MAX;
s32 err = 0;
bool scan_abort = false;
u32 scan_channel;
WL_TRACE("Enter\n");
if (cfg_priv->iscan_on && cfg_priv->iscan_kickstart) {
WL_TRACE("Exit\n");
return brcmf_wakeup_iscan(cfg_to_iscan(cfg_priv));
}
if (!test_and_clear_bit(WL_STATUS_SCANNING, &cfg_priv->status)) {
WL_ERR("Scan complete while device not scanning\n");
scan_abort = true;
err = -EINVAL;
goto scan_done_out;
}
err = brcmf_exec_dcmd(ndev, BRCMF_C_GET_CHANNEL, &channel_inform_le,
sizeof(channel_inform_le));
if (err) {
WL_ERR("scan busy (%d)\n", err);
scan_abort = true;
goto scan_done_out;
}
scan_channel = le32_to_cpu(channel_inform_le.scan_channel);
if (scan_channel)
WL_CONN("channel_inform.scan_channel (%d)\n", scan_channel);
cfg_priv->bss_list = cfg_priv->scan_results;
bss_list_le = (struct brcmf_scan_results_le *) cfg_priv->bss_list;
memset(cfg_priv->scan_results, 0, len);
bss_list_le->buflen = cpu_to_le32(len);
err = brcmf_exec_dcmd(ndev, BRCMF_C_SCAN_RESULTS,
cfg_priv->scan_results, len);
if (err) {
WL_ERR("%s Scan_results error (%d)\n", ndev->name, err);
err = -EINVAL;
scan_abort = true;
goto scan_done_out;
}
cfg_priv->scan_results->buflen = le32_to_cpu(bss_list_le->buflen);
cfg_priv->scan_results->version = le32_to_cpu(bss_list_le->version);
cfg_priv->scan_results->count = le32_to_cpu(bss_list_le->count);
err = brcmf_inform_bss(cfg_priv);
if (err) {
scan_abort = true;
goto scan_done_out;
}
scan_done_out:
if (cfg_priv->scan_request) {
WL_SCAN("calling cfg80211_scan_done\n");
cfg80211_scan_done(cfg_priv->scan_request, scan_abort);
brcmf_set_mpc(ndev, 1);
cfg_priv->scan_request = NULL;
}
WL_TRACE("Exit\n");
return err;
}
static void brcmf_init_conf(struct brcmf_cfg80211_conf *conf)
{
conf->mode = (u32)-1;
conf->frag_threshold = (u32)-1;
conf->rts_threshold = (u32)-1;
conf->retry_short = (u32)-1;
conf->retry_long = (u32)-1;
conf->tx_power = -1;
}
static void brcmf_init_eloop_handler(struct brcmf_cfg80211_event_loop *el)
{
memset(el, 0, sizeof(*el));
el->handler[BRCMF_E_SCAN_COMPLETE] = brcmf_notify_scan_status;
el->handler[BRCMF_E_LINK] = brcmf_notify_connect_status;
el->handler[BRCMF_E_ROAM] = brcmf_notify_roaming_status;
el->handler[BRCMF_E_MIC_ERROR] = brcmf_notify_mic_status;
el->handler[BRCMF_E_SET_SSID] = brcmf_notify_connect_status;
}
static void brcmf_deinit_priv_mem(struct brcmf_cfg80211_priv *cfg_priv)
{
kfree(cfg_priv->scan_results);
cfg_priv->scan_results = NULL;
kfree(cfg_priv->bss_info);
cfg_priv->bss_info = NULL;
kfree(cfg_priv->conf);
cfg_priv->conf = NULL;
kfree(cfg_priv->profile);
cfg_priv->profile = NULL;
kfree(cfg_priv->scan_req_int);
cfg_priv->scan_req_int = NULL;
kfree(cfg_priv->dcmd_buf);
cfg_priv->dcmd_buf = NULL;
kfree(cfg_priv->extra_buf);
cfg_priv->extra_buf = NULL;
kfree(cfg_priv->iscan);
cfg_priv->iscan = NULL;
kfree(cfg_priv->pmk_list);
cfg_priv->pmk_list = NULL;
}
static s32 brcmf_init_priv_mem(struct brcmf_cfg80211_priv *cfg_priv)
{
cfg_priv->scan_results = kzalloc(WL_SCAN_BUF_MAX, GFP_KERNEL);
if (!cfg_priv->scan_results)
goto init_priv_mem_out;
cfg_priv->conf = kzalloc(sizeof(*cfg_priv->conf), GFP_KERNEL);
if (!cfg_priv->conf)
goto init_priv_mem_out;
cfg_priv->profile = kzalloc(sizeof(*cfg_priv->profile), GFP_KERNEL);
if (!cfg_priv->profile)
goto init_priv_mem_out;
cfg_priv->bss_info = kzalloc(WL_BSS_INFO_MAX, GFP_KERNEL);
if (!cfg_priv->bss_info)
goto init_priv_mem_out;
cfg_priv->scan_req_int = kzalloc(sizeof(*cfg_priv->scan_req_int),
GFP_KERNEL);
if (!cfg_priv->scan_req_int)
goto init_priv_mem_out;
cfg_priv->dcmd_buf = kzalloc(WL_DCMD_LEN_MAX, GFP_KERNEL);
if (!cfg_priv->dcmd_buf)
goto init_priv_mem_out;
cfg_priv->extra_buf = kzalloc(WL_EXTRA_BUF_MAX, GFP_KERNEL);
if (!cfg_priv->extra_buf)
goto init_priv_mem_out;
cfg_priv->iscan = kzalloc(sizeof(*cfg_priv->iscan), GFP_KERNEL);
if (!cfg_priv->iscan)
goto init_priv_mem_out;
cfg_priv->pmk_list = kzalloc(sizeof(*cfg_priv->pmk_list), GFP_KERNEL);
if (!cfg_priv->pmk_list)
goto init_priv_mem_out;
return 0;
init_priv_mem_out:
brcmf_deinit_priv_mem(cfg_priv);
return -ENOMEM;
}
/*
* retrieve first queued event from head
*/
static struct brcmf_cfg80211_event_q *brcmf_deq_event(
struct brcmf_cfg80211_priv *cfg_priv)
{
struct brcmf_cfg80211_event_q *e = NULL;
spin_lock_irq(&cfg_priv->evt_q_lock);
if (!list_empty(&cfg_priv->evt_q_list)) {
e = list_first_entry(&cfg_priv->evt_q_list,
struct brcmf_cfg80211_event_q, evt_q_list);
list_del(&e->evt_q_list);
}
spin_unlock_irq(&cfg_priv->evt_q_lock);
return e;
}
/*
* push event to tail of the queue
*
* remark: this function may not sleep as it is called in atomic context.
*/
static s32
brcmf_enq_event(struct brcmf_cfg80211_priv *cfg_priv, u32 event,
const struct brcmf_event_msg *msg)
{
struct brcmf_cfg80211_event_q *e;
s32 err = 0;
ulong flags;
e = kzalloc(sizeof(struct brcmf_cfg80211_event_q), GFP_ATOMIC);
if (!e)
return -ENOMEM;
e->etype = event;
memcpy(&e->emsg, msg, sizeof(struct brcmf_event_msg));
spin_lock_irqsave(&cfg_priv->evt_q_lock, flags);
list_add_tail(&e->evt_q_list, &cfg_priv->evt_q_list);
spin_unlock_irqrestore(&cfg_priv->evt_q_lock, flags);
return err;
}
static void brcmf_put_event(struct brcmf_cfg80211_event_q *e)
{
kfree(e);
}
static void brcmf_cfg80211_event_handler(struct work_struct *work)
{
struct brcmf_cfg80211_priv *cfg_priv =
container_of(work, struct brcmf_cfg80211_priv,
event_work);
struct brcmf_cfg80211_event_q *e;
e = brcmf_deq_event(cfg_priv);
if (unlikely(!e)) {
WL_ERR("event queue empty...\n");
return;
}
do {
WL_INFO("event type (%d)\n", e->etype);
if (cfg_priv->el.handler[e->etype])
cfg_priv->el.handler[e->etype](cfg_priv,
cfg_to_ndev(cfg_priv),
&e->emsg, e->edata);
else
WL_INFO("Unknown Event (%d): ignoring\n", e->etype);
brcmf_put_event(e);
} while ((e = brcmf_deq_event(cfg_priv)));
}
static void brcmf_init_eq(struct brcmf_cfg80211_priv *cfg_priv)
{
spin_lock_init(&cfg_priv->evt_q_lock);
INIT_LIST_HEAD(&cfg_priv->evt_q_list);
}
static void brcmf_flush_eq(struct brcmf_cfg80211_priv *cfg_priv)
{
struct brcmf_cfg80211_event_q *e;
spin_lock_irq(&cfg_priv->evt_q_lock);
while (!list_empty(&cfg_priv->evt_q_list)) {
e = list_first_entry(&cfg_priv->evt_q_list,
struct brcmf_cfg80211_event_q, evt_q_list);
list_del(&e->evt_q_list);
kfree(e);
}
spin_unlock_irq(&cfg_priv->evt_q_lock);
}
static s32 wl_init_priv(struct brcmf_cfg80211_priv *cfg_priv)
{
s32 err = 0;
cfg_priv->scan_request = NULL;
cfg_priv->pwr_save = true;
cfg_priv->iscan_on = true; /* iscan on & off switch.
we enable iscan per default */
cfg_priv->roam_on = true; /* roam on & off switch.
we enable roam per default */
cfg_priv->iscan_kickstart = false;
cfg_priv->active_scan = true; /* we do active scan for
specific scan per default */
cfg_priv->dongle_up = false; /* dongle is not up yet */
brcmf_init_eq(cfg_priv);
err = brcmf_init_priv_mem(cfg_priv);
if (err)
return err;
INIT_WORK(&cfg_priv->event_work, brcmf_cfg80211_event_handler);
brcmf_init_eloop_handler(&cfg_priv->el);
mutex_init(&cfg_priv->usr_sync);
err = brcmf_init_iscan(cfg_priv);
if (err)
return err;
brcmf_init_conf(cfg_priv->conf);
brcmf_init_prof(cfg_priv->profile);
brcmf_link_down(cfg_priv);
return err;
}
static void wl_deinit_priv(struct brcmf_cfg80211_priv *cfg_priv)
{
cancel_work_sync(&cfg_priv->event_work);
cfg_priv->dongle_up = false; /* dongle down */
brcmf_flush_eq(cfg_priv);
brcmf_link_down(cfg_priv);
brcmf_term_iscan(cfg_priv);
brcmf_deinit_priv_mem(cfg_priv);
}
struct brcmf_cfg80211_dev *brcmf_cfg80211_attach(struct net_device *ndev,
struct device *busdev,
void *data)
{
struct wireless_dev *wdev;
struct brcmf_cfg80211_priv *cfg_priv;
struct brcmf_cfg80211_iface *ci;
struct brcmf_cfg80211_dev *cfg_dev;
s32 err = 0;
if (!ndev) {
WL_ERR("ndev is invalid\n");
return NULL;
}
cfg_dev = kzalloc(sizeof(struct brcmf_cfg80211_dev), GFP_KERNEL);
if (!cfg_dev)
return NULL;
wdev = brcmf_alloc_wdev(sizeof(struct brcmf_cfg80211_iface), busdev);
if (IS_ERR(wdev)) {
kfree(cfg_dev);
return NULL;
}
wdev->iftype = brcmf_mode_to_nl80211_iftype(WL_MODE_BSS);
cfg_priv = wdev_to_cfg(wdev);
cfg_priv->wdev = wdev;
cfg_priv->pub = data;
ci = (struct brcmf_cfg80211_iface *)&cfg_priv->ci;
ci->cfg_priv = cfg_priv;
ndev->ieee80211_ptr = wdev;
SET_NETDEV_DEV(ndev, wiphy_dev(wdev->wiphy));
wdev->netdev = ndev;
err = wl_init_priv(cfg_priv);
if (err) {
WL_ERR("Failed to init iwm_priv (%d)\n", err);
goto cfg80211_attach_out;
}
brcmf_set_drvdata(cfg_dev, ci);
return cfg_dev;
cfg80211_attach_out:
brcmf_free_wdev(cfg_priv);
kfree(cfg_dev);
return NULL;
}
void brcmf_cfg80211_detach(struct brcmf_cfg80211_dev *cfg_dev)
{
struct brcmf_cfg80211_priv *cfg_priv;
cfg_priv = brcmf_priv_get(cfg_dev);
wl_deinit_priv(cfg_priv);
brcmf_free_wdev(cfg_priv);
brcmf_set_drvdata(cfg_dev, NULL);
kfree(cfg_dev);
}
void
brcmf_cfg80211_event(struct net_device *ndev,
const struct brcmf_event_msg *e, void *data)
{
u32 event_type = be32_to_cpu(e->event_type);
struct brcmf_cfg80211_priv *cfg_priv = ndev_to_cfg(ndev);
if (!brcmf_enq_event(cfg_priv, event_type, e))
schedule_work(&cfg_priv->event_work);
}
static s32 brcmf_dongle_mode(struct net_device *ndev, s32 iftype)
{
s32 infra = 0;
s32 err = 0;
switch (iftype) {
case NL80211_IFTYPE_MONITOR:
case NL80211_IFTYPE_WDS:
WL_ERR("type (%d) : currently we do not support this mode\n",
iftype);
err = -EINVAL;
return err;
case NL80211_IFTYPE_ADHOC:
infra = 0;
break;
case NL80211_IFTYPE_STATION:
infra = 1;
break;
default:
err = -EINVAL;
WL_ERR("invalid type (%d)\n", iftype);
return err;
}
err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_INFRA, &infra);
if (err) {
WL_ERR("WLC_SET_INFRA error (%d)\n", err);
return err;
}
return 0;
}
static s32 brcmf_dongle_eventmsg(struct net_device *ndev)
{
/* Room for "event_msgs" + '\0' + bitvec */
s8 iovbuf[BRCMF_EVENTING_MASK_LEN + 12];
s8 eventmask[BRCMF_EVENTING_MASK_LEN];
s32 err = 0;
WL_TRACE("Enter\n");
/* Setup event_msgs */
brcmf_c_mkiovar("event_msgs", eventmask, BRCMF_EVENTING_MASK_LEN,
iovbuf, sizeof(iovbuf));
err = brcmf_exec_dcmd(ndev, BRCMF_C_GET_VAR, iovbuf, sizeof(iovbuf));
if (err) {
WL_ERR("Get event_msgs error (%d)\n", err);
goto dongle_eventmsg_out;
}
memcpy(eventmask, iovbuf, BRCMF_EVENTING_MASK_LEN);
setbit(eventmask, BRCMF_E_SET_SSID);
setbit(eventmask, BRCMF_E_ROAM);
setbit(eventmask, BRCMF_E_PRUNE);
setbit(eventmask, BRCMF_E_AUTH);
setbit(eventmask, BRCMF_E_REASSOC);
setbit(eventmask, BRCMF_E_REASSOC_IND);
setbit(eventmask, BRCMF_E_DEAUTH_IND);
setbit(eventmask, BRCMF_E_DISASSOC_IND);
setbit(eventmask, BRCMF_E_DISASSOC);
setbit(eventmask, BRCMF_E_JOIN);
setbit(eventmask, BRCMF_E_ASSOC_IND);
setbit(eventmask, BRCMF_E_PSK_SUP);
setbit(eventmask, BRCMF_E_LINK);
setbit(eventmask, BRCMF_E_NDIS_LINK);
setbit(eventmask, BRCMF_E_MIC_ERROR);
setbit(eventmask, BRCMF_E_PMKID_CACHE);
setbit(eventmask, BRCMF_E_TXFAIL);
setbit(eventmask, BRCMF_E_JOIN_START);
setbit(eventmask, BRCMF_E_SCAN_COMPLETE);
brcmf_c_mkiovar("event_msgs", eventmask, BRCMF_EVENTING_MASK_LEN,
iovbuf, sizeof(iovbuf));
err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_VAR, iovbuf, sizeof(iovbuf));
if (err) {
WL_ERR("Set event_msgs error (%d)\n", err);
goto dongle_eventmsg_out;
}
dongle_eventmsg_out:
WL_TRACE("Exit\n");
return err;
}
static s32
brcmf_dongle_roam(struct net_device *ndev, u32 roamvar, u32 bcn_timeout)
{
s8 iovbuf[32];
s32 err = 0;
__le32 roamtrigger[2];
__le32 roam_delta[2];
__le32 bcn_to_le;
__le32 roamvar_le;
/*
* Setup timeout if Beacons are lost and roam is
* off to report link down
*/
if (roamvar) {
bcn_to_le = cpu_to_le32(bcn_timeout);
brcmf_c_mkiovar("bcn_timeout", (char *)&bcn_to_le,
sizeof(bcn_to_le), iovbuf, sizeof(iovbuf));
err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_VAR,
iovbuf, sizeof(iovbuf));
if (err) {
WL_ERR("bcn_timeout error (%d)\n", err);
goto dongle_rom_out;
}
}
/*
* Enable/Disable built-in roaming to allow supplicant
* to take care of roaming
*/
WL_INFO("Internal Roaming = %s\n", roamvar ? "Off" : "On");
roamvar_le = cpu_to_le32(roamvar);
brcmf_c_mkiovar("roam_off", (char *)&roamvar_le,
sizeof(roamvar_le), iovbuf, sizeof(iovbuf));
err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_VAR, iovbuf, sizeof(iovbuf));
if (err) {
WL_ERR("roam_off error (%d)\n", err);
goto dongle_rom_out;
}
roamtrigger[0] = cpu_to_le32(WL_ROAM_TRIGGER_LEVEL);
roamtrigger[1] = cpu_to_le32(BRCM_BAND_ALL);
err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_ROAM_TRIGGER,
(void *)roamtrigger, sizeof(roamtrigger));
if (err) {
WL_ERR("WLC_SET_ROAM_TRIGGER error (%d)\n", err);
goto dongle_rom_out;
}
roam_delta[0] = cpu_to_le32(WL_ROAM_DELTA);
roam_delta[1] = cpu_to_le32(BRCM_BAND_ALL);
err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_ROAM_DELTA,
(void *)roam_delta, sizeof(roam_delta));
if (err) {
WL_ERR("WLC_SET_ROAM_DELTA error (%d)\n", err);
goto dongle_rom_out;
}
dongle_rom_out:
return err;
}
static s32
brcmf_dongle_scantime(struct net_device *ndev, s32 scan_assoc_time,
s32 scan_unassoc_time, s32 scan_passive_time)
{
s32 err = 0;
__le32 scan_assoc_tm_le = cpu_to_le32(scan_assoc_time);
__le32 scan_unassoc_tm_le = cpu_to_le32(scan_unassoc_time);
__le32 scan_passive_tm_le = cpu_to_le32(scan_passive_time);
err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_SCAN_CHANNEL_TIME,
&scan_assoc_tm_le, sizeof(scan_assoc_tm_le));
if (err) {
if (err == -EOPNOTSUPP)
WL_INFO("Scan assoc time is not supported\n");
else
WL_ERR("Scan assoc time error (%d)\n", err);
goto dongle_scantime_out;
}
err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_SCAN_UNASSOC_TIME,
&scan_unassoc_tm_le, sizeof(scan_unassoc_tm_le));
if (err) {
if (err == -EOPNOTSUPP)
WL_INFO("Scan unassoc time is not supported\n");
else
WL_ERR("Scan unassoc time error (%d)\n", err);
goto dongle_scantime_out;
}
err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_SCAN_PASSIVE_TIME,
&scan_passive_tm_le, sizeof(scan_passive_tm_le));
if (err) {
if (err == -EOPNOTSUPP)
WL_INFO("Scan passive time is not supported\n");
else
WL_ERR("Scan passive time error (%d)\n", err);
goto dongle_scantime_out;
}
dongle_scantime_out:
return err;
}
static s32 wl_update_wiphybands(struct brcmf_cfg80211_priv *cfg_priv)
{
struct wiphy *wiphy;
s32 phy_list;
s8 phy;
s32 err = 0;
err = brcmf_exec_dcmd(cfg_to_ndev(cfg_priv), BRCM_GET_PHYLIST,
&phy_list, sizeof(phy_list));
if (err) {
WL_ERR("error (%d)\n", err);
return err;
}
phy = ((char *)&phy_list)[1];
WL_INFO("%c phy\n", phy);
if (phy == 'n' || phy == 'a') {
wiphy = cfg_to_wiphy(cfg_priv);
wiphy->bands[IEEE80211_BAND_5GHZ] = &__wl_band_5ghz_n;
}
return err;
}
static s32 brcmf_dongle_probecap(struct brcmf_cfg80211_priv *cfg_priv)
{
return wl_update_wiphybands(cfg_priv);
}
static s32 brcmf_config_dongle(struct brcmf_cfg80211_priv *cfg_priv)
{
struct net_device *ndev;
struct wireless_dev *wdev;
s32 power_mode;
s32 err = 0;
if (cfg_priv->dongle_up)
return err;
ndev = cfg_to_ndev(cfg_priv);
wdev = ndev->ieee80211_ptr;
brcmf_dongle_scantime(ndev, WL_SCAN_CHANNEL_TIME,
WL_SCAN_UNASSOC_TIME, WL_SCAN_PASSIVE_TIME);
err = brcmf_dongle_eventmsg(ndev);
if (err)
goto default_conf_out;
power_mode = cfg_priv->pwr_save ? PM_FAST : PM_OFF;
err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_PM, &power_mode);
if (err)
goto default_conf_out;
WL_INFO("power save set to %s\n",
(power_mode ? "enabled" : "disabled"));
err = brcmf_dongle_roam(ndev, (cfg_priv->roam_on ? 0 : 1),
WL_BEACON_TIMEOUT);
if (err)
goto default_conf_out;
err = brcmf_dongle_mode(ndev, wdev->iftype);
if (err && err != -EINPROGRESS)
goto default_conf_out;
err = brcmf_dongle_probecap(cfg_priv);
if (err)
goto default_conf_out;
/* -EINPROGRESS: Call commit handler */
default_conf_out:
cfg_priv->dongle_up = true;
return err;
}
static int brcmf_debugfs_add_netdev_params(struct brcmf_cfg80211_priv *cfg_priv)
{
char buf[10+IFNAMSIZ];
struct dentry *fd;
s32 err = 0;
sprintf(buf, "netdev:%s", cfg_to_ndev(cfg_priv)->name);
cfg_priv->debugfsdir = debugfs_create_dir(buf,
cfg_to_wiphy(cfg_priv)->debugfsdir);
fd = debugfs_create_u16("beacon_int", S_IRUGO, cfg_priv->debugfsdir,
(u16 *)&cfg_priv->profile->beacon_interval);
if (!fd) {
err = -ENOMEM;
goto err_out;
}
fd = debugfs_create_u8("dtim_period", S_IRUGO, cfg_priv->debugfsdir,
(u8 *)&cfg_priv->profile->dtim_period);
if (!fd) {
err = -ENOMEM;
goto err_out;
}
err_out:
return err;
}
static void brcmf_debugfs_remove_netdev(struct brcmf_cfg80211_priv *cfg_priv)
{
debugfs_remove_recursive(cfg_priv->debugfsdir);
cfg_priv->debugfsdir = NULL;
}
static s32 __brcmf_cfg80211_up(struct brcmf_cfg80211_priv *cfg_priv)
{
s32 err = 0;
set_bit(WL_STATUS_READY, &cfg_priv->status);
brcmf_debugfs_add_netdev_params(cfg_priv);
err = brcmf_config_dongle(cfg_priv);
if (err)
return err;
brcmf_invoke_iscan(cfg_priv);
return err;
}
static s32 __brcmf_cfg80211_down(struct brcmf_cfg80211_priv *cfg_priv)
{
/*
* While going down, if associated with AP disassociate
* from AP to save power
*/
if ((test_bit(WL_STATUS_CONNECTED, &cfg_priv->status) ||
test_bit(WL_STATUS_CONNECTING, &cfg_priv->status)) &&
test_bit(WL_STATUS_READY, &cfg_priv->status)) {
WL_INFO("Disassociating from AP");
brcmf_link_down(cfg_priv);
/* Make sure WPA_Supplicant receives all the event
generated due to DISASSOC call to the fw to keep
the state fw and WPA_Supplicant state consistent
*/
brcmf_delay(500);
}
set_bit(WL_STATUS_SCAN_ABORTING, &cfg_priv->status);
brcmf_term_iscan(cfg_priv);
if (cfg_priv->scan_request) {
cfg80211_scan_done(cfg_priv->scan_request, true);
/* May need to perform this to cover rmmod */
/* wl_set_mpc(cfg_to_ndev(wl), 1); */
cfg_priv->scan_request = NULL;
}
clear_bit(WL_STATUS_READY, &cfg_priv->status);
clear_bit(WL_STATUS_SCANNING, &cfg_priv->status);
clear_bit(WL_STATUS_SCAN_ABORTING, &cfg_priv->status);
brcmf_debugfs_remove_netdev(cfg_priv);
return 0;
}
s32 brcmf_cfg80211_up(struct brcmf_cfg80211_dev *cfg_dev)
{
struct brcmf_cfg80211_priv *cfg_priv;
s32 err = 0;
cfg_priv = brcmf_priv_get(cfg_dev);
mutex_lock(&cfg_priv->usr_sync);
err = __brcmf_cfg80211_up(cfg_priv);
mutex_unlock(&cfg_priv->usr_sync);
return err;
}
s32 brcmf_cfg80211_down(struct brcmf_cfg80211_dev *cfg_dev)
{
struct brcmf_cfg80211_priv *cfg_priv;
s32 err = 0;
cfg_priv = brcmf_priv_get(cfg_dev);
mutex_lock(&cfg_priv->usr_sync);
err = __brcmf_cfg80211_down(cfg_priv);
mutex_unlock(&cfg_priv->usr_sync);
return err;
}
static __used s32 brcmf_add_ie(struct brcmf_cfg80211_priv *cfg_priv,
u8 t, u8 l, u8 *v)
{
struct brcmf_cfg80211_ie *ie = &cfg_priv->ie;
s32 err = 0;
if (ie->offset + l + 2 > WL_TLV_INFO_MAX) {
WL_ERR("ei crosses buffer boundary\n");
return -ENOSPC;
}
ie->buf[ie->offset] = t;
ie->buf[ie->offset + 1] = l;
memcpy(&ie->buf[ie->offset + 2], v, l);
ie->offset += l + 2;
return err;
}