1097 lines
27 KiB
C
1097 lines
27 KiB
C
|
/*
|
||
|
* drivers/crypto/tegra-aes.c
|
||
|
*
|
||
|
* Driver for NVIDIA Tegra AES hardware engine residing inside the
|
||
|
* Bit Stream Engine for Video (BSEV) hardware block.
|
||
|
*
|
||
|
* The programming sequence for this engine is with the help
|
||
|
* of commands which travel via a command queue residing between the
|
||
|
* CPU and the BSEV block. The BSEV engine has an internal RAM (VRAM)
|
||
|
* where the final input plaintext, keys and the IV have to be copied
|
||
|
* before starting the encrypt/decrypt operation.
|
||
|
*
|
||
|
* Copyright (c) 2010, NVIDIA Corporation.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
||
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||
|
* more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License along
|
||
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
||
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||
|
*/
|
||
|
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/clk.h>
|
||
|
#include <linux/platform_device.h>
|
||
|
#include <linux/scatterlist.h>
|
||
|
#include <linux/dma-mapping.h>
|
||
|
#include <linux/io.h>
|
||
|
#include <linux/mutex.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/completion.h>
|
||
|
#include <linux/workqueue.h>
|
||
|
|
||
|
#include <mach/clk.h>
|
||
|
|
||
|
#include <crypto/scatterwalk.h>
|
||
|
#include <crypto/aes.h>
|
||
|
#include <crypto/internal/rng.h>
|
||
|
|
||
|
#include "tegra-aes.h"
|
||
|
|
||
|
#define FLAGS_MODE_MASK 0x00FF
|
||
|
#define FLAGS_ENCRYPT BIT(0)
|
||
|
#define FLAGS_CBC BIT(1)
|
||
|
#define FLAGS_GIV BIT(2)
|
||
|
#define FLAGS_RNG BIT(3)
|
||
|
#define FLAGS_OFB BIT(4)
|
||
|
#define FLAGS_NEW_KEY BIT(5)
|
||
|
#define FLAGS_NEW_IV BIT(6)
|
||
|
#define FLAGS_INIT BIT(7)
|
||
|
#define FLAGS_FAST BIT(8)
|
||
|
#define FLAGS_BUSY 9
|
||
|
|
||
|
/*
|
||
|
* Defines AES engine Max process bytes size in one go, which takes 1 msec.
|
||
|
* AES engine spends about 176 cycles/16-bytes or 11 cycles/byte
|
||
|
* The duration CPU can use the BSE to 1 msec, then the number of available
|
||
|
* cycles of AVP/BSE is 216K. In this duration, AES can process 216/11 ~= 19KB
|
||
|
* Based on this AES_HW_DMA_BUFFER_SIZE_BYTES is configured to 16KB.
|
||
|
*/
|
||
|
#define AES_HW_DMA_BUFFER_SIZE_BYTES 0x4000
|
||
|
|
||
|
/*
|
||
|
* The key table length is 64 bytes
|
||
|
* (This includes first upto 32 bytes key + 16 bytes original initial vector
|
||
|
* and 16 bytes updated initial vector)
|
||
|
*/
|
||
|
#define AES_HW_KEY_TABLE_LENGTH_BYTES 64
|
||
|
|
||
|
/*
|
||
|
* The memory being used is divides as follows:
|
||
|
* 1. Key - 32 bytes
|
||
|
* 2. Original IV - 16 bytes
|
||
|
* 3. Updated IV - 16 bytes
|
||
|
* 4. Key schedule - 256 bytes
|
||
|
*
|
||
|
* 1+2+3 constitute the hw key table.
|
||
|
*/
|
||
|
#define AES_HW_IV_SIZE 16
|
||
|
#define AES_HW_KEYSCHEDULE_LEN 256
|
||
|
#define AES_IVKEY_SIZE (AES_HW_KEY_TABLE_LENGTH_BYTES + AES_HW_KEYSCHEDULE_LEN)
|
||
|
|
||
|
/* Define commands required for AES operation */
|
||
|
enum {
|
||
|
CMD_BLKSTARTENGINE = 0x0E,
|
||
|
CMD_DMASETUP = 0x10,
|
||
|
CMD_DMACOMPLETE = 0x11,
|
||
|
CMD_SETTABLE = 0x15,
|
||
|
CMD_MEMDMAVD = 0x22,
|
||
|
};
|
||
|
|
||
|
/* Define sub-commands */
|
||
|
enum {
|
||
|
SUBCMD_VRAM_SEL = 0x1,
|
||
|
SUBCMD_CRYPTO_TABLE_SEL = 0x3,
|
||
|
SUBCMD_KEY_TABLE_SEL = 0x8,
|
||
|
};
|
||
|
|
||
|
/* memdma_vd command */
|
||
|
#define MEMDMA_DIR_DTOVRAM 0 /* sdram -> vram */
|
||
|
#define MEMDMA_DIR_VTODRAM 1 /* vram -> sdram */
|
||
|
#define MEMDMA_DIR_SHIFT 25
|
||
|
#define MEMDMA_NUM_WORDS_SHIFT 12
|
||
|
|
||
|
/* command queue bit shifts */
|
||
|
enum {
|
||
|
CMDQ_KEYTABLEADDR_SHIFT = 0,
|
||
|
CMDQ_KEYTABLEID_SHIFT = 17,
|
||
|
CMDQ_VRAMSEL_SHIFT = 23,
|
||
|
CMDQ_TABLESEL_SHIFT = 24,
|
||
|
CMDQ_OPCODE_SHIFT = 26,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* The secure key slot contains a unique secure key generated
|
||
|
* and loaded by the bootloader. This slot is marked as non-accessible
|
||
|
* to the kernel.
|
||
|
*/
|
||
|
#define SSK_SLOT_NUM 4
|
||
|
|
||
|
#define AES_NR_KEYSLOTS 8
|
||
|
#define TEGRA_AES_QUEUE_LENGTH 50
|
||
|
#define DEFAULT_RNG_BLK_SZ 16
|
||
|
|
||
|
/* The command queue depth */
|
||
|
#define AES_HW_MAX_ICQ_LENGTH 5
|
||
|
|
||
|
struct tegra_aes_slot {
|
||
|
struct list_head node;
|
||
|
int slot_num;
|
||
|
};
|
||
|
|
||
|
static struct tegra_aes_slot ssk = {
|
||
|
.slot_num = SSK_SLOT_NUM,
|
||
|
};
|
||
|
|
||
|
struct tegra_aes_reqctx {
|
||
|
unsigned long mode;
|
||
|
};
|
||
|
|
||
|
struct tegra_aes_dev {
|
||
|
struct device *dev;
|
||
|
void __iomem *io_base;
|
||
|
dma_addr_t ivkey_phys_base;
|
||
|
void __iomem *ivkey_base;
|
||
|
struct clk *aes_clk;
|
||
|
struct tegra_aes_ctx *ctx;
|
||
|
int irq;
|
||
|
unsigned long flags;
|
||
|
struct completion op_complete;
|
||
|
u32 *buf_in;
|
||
|
dma_addr_t dma_buf_in;
|
||
|
u32 *buf_out;
|
||
|
dma_addr_t dma_buf_out;
|
||
|
u8 *iv;
|
||
|
u8 dt[DEFAULT_RNG_BLK_SZ];
|
||
|
int ivlen;
|
||
|
u64 ctr;
|
||
|
spinlock_t lock;
|
||
|
struct crypto_queue queue;
|
||
|
struct tegra_aes_slot *slots;
|
||
|
struct ablkcipher_request *req;
|
||
|
size_t total;
|
||
|
struct scatterlist *in_sg;
|
||
|
size_t in_offset;
|
||
|
struct scatterlist *out_sg;
|
||
|
size_t out_offset;
|
||
|
};
|
||
|
|
||
|
static struct tegra_aes_dev *aes_dev;
|
||
|
|
||
|
struct tegra_aes_ctx {
|
||
|
struct tegra_aes_dev *dd;
|
||
|
unsigned long flags;
|
||
|
struct tegra_aes_slot *slot;
|
||
|
u8 key[AES_MAX_KEY_SIZE];
|
||
|
size_t keylen;
|
||
|
};
|
||
|
|
||
|
static struct tegra_aes_ctx rng_ctx = {
|
||
|
.flags = FLAGS_NEW_KEY,
|
||
|
.keylen = AES_KEYSIZE_128,
|
||
|
};
|
||
|
|
||
|
/* keep registered devices data here */
|
||
|
static struct list_head dev_list;
|
||
|
static DEFINE_SPINLOCK(list_lock);
|
||
|
static DEFINE_MUTEX(aes_lock);
|
||
|
|
||
|
static void aes_workqueue_handler(struct work_struct *work);
|
||
|
static DECLARE_WORK(aes_work, aes_workqueue_handler);
|
||
|
static struct workqueue_struct *aes_wq;
|
||
|
|
||
|
extern unsigned long long tegra_chip_uid(void);
|
||
|
|
||
|
static inline u32 aes_readl(struct tegra_aes_dev *dd, u32 offset)
|
||
|
{
|
||
|
return readl(dd->io_base + offset);
|
||
|
}
|
||
|
|
||
|
static inline void aes_writel(struct tegra_aes_dev *dd, u32 val, u32 offset)
|
||
|
{
|
||
|
writel(val, dd->io_base + offset);
|
||
|
}
|
||
|
|
||
|
static int aes_start_crypt(struct tegra_aes_dev *dd, u32 in_addr, u32 out_addr,
|
||
|
int nblocks, int mode, bool upd_iv)
|
||
|
{
|
||
|
u32 cmdq[AES_HW_MAX_ICQ_LENGTH];
|
||
|
int i, eng_busy, icq_empty, ret;
|
||
|
u32 value;
|
||
|
|
||
|
/* reset all the interrupt bits */
|
||
|
aes_writel(dd, 0xFFFFFFFF, TEGRA_AES_INTR_STATUS);
|
||
|
|
||
|
/* enable error, dma xfer complete interrupts */
|
||
|
aes_writel(dd, 0x33, TEGRA_AES_INT_ENB);
|
||
|
|
||
|
cmdq[0] = CMD_DMASETUP << CMDQ_OPCODE_SHIFT;
|
||
|
cmdq[1] = in_addr;
|
||
|
cmdq[2] = CMD_BLKSTARTENGINE << CMDQ_OPCODE_SHIFT | (nblocks-1);
|
||
|
cmdq[3] = CMD_DMACOMPLETE << CMDQ_OPCODE_SHIFT;
|
||
|
|
||
|
value = aes_readl(dd, TEGRA_AES_CMDQUE_CONTROL);
|
||
|
/* access SDRAM through AHB */
|
||
|
value &= ~TEGRA_AES_CMDQ_CTRL_SRC_STM_SEL_FIELD;
|
||
|
value &= ~TEGRA_AES_CMDQ_CTRL_DST_STM_SEL_FIELD;
|
||
|
value |= TEGRA_AES_CMDQ_CTRL_SRC_STM_SEL_FIELD |
|
||
|
TEGRA_AES_CMDQ_CTRL_DST_STM_SEL_FIELD |
|
||
|
TEGRA_AES_CMDQ_CTRL_ICMDQEN_FIELD;
|
||
|
aes_writel(dd, value, TEGRA_AES_CMDQUE_CONTROL);
|
||
|
dev_dbg(dd->dev, "cmd_q_ctrl=0x%x", value);
|
||
|
|
||
|
value = (0x1 << TEGRA_AES_SECURE_INPUT_ALG_SEL_SHIFT) |
|
||
|
((dd->ctx->keylen * 8) <<
|
||
|
TEGRA_AES_SECURE_INPUT_KEY_LEN_SHIFT) |
|
||
|
((u32)upd_iv << TEGRA_AES_SECURE_IV_SELECT_SHIFT);
|
||
|
|
||
|
if (mode & FLAGS_CBC) {
|
||
|
value |= ((((mode & FLAGS_ENCRYPT) ? 2 : 3)
|
||
|
<< TEGRA_AES_SECURE_XOR_POS_SHIFT) |
|
||
|
(((mode & FLAGS_ENCRYPT) ? 2 : 3)
|
||
|
<< TEGRA_AES_SECURE_VCTRAM_SEL_SHIFT) |
|
||
|
((mode & FLAGS_ENCRYPT) ? 1 : 0)
|
||
|
<< TEGRA_AES_SECURE_CORE_SEL_SHIFT);
|
||
|
} else if (mode & FLAGS_OFB) {
|
||
|
value |= ((TEGRA_AES_SECURE_XOR_POS_FIELD) |
|
||
|
(2 << TEGRA_AES_SECURE_INPUT_SEL_SHIFT) |
|
||
|
(TEGRA_AES_SECURE_CORE_SEL_FIELD));
|
||
|
} else if (mode & FLAGS_RNG) {
|
||
|
value |= (((mode & FLAGS_ENCRYPT) ? 1 : 0)
|
||
|
<< TEGRA_AES_SECURE_CORE_SEL_SHIFT |
|
||
|
TEGRA_AES_SECURE_RNG_ENB_FIELD);
|
||
|
} else {
|
||
|
value |= (((mode & FLAGS_ENCRYPT) ? 1 : 0)
|
||
|
<< TEGRA_AES_SECURE_CORE_SEL_SHIFT);
|
||
|
}
|
||
|
|
||
|
dev_dbg(dd->dev, "secure_in_sel=0x%x", value);
|
||
|
aes_writel(dd, value, TEGRA_AES_SECURE_INPUT_SELECT);
|
||
|
|
||
|
aes_writel(dd, out_addr, TEGRA_AES_SECURE_DEST_ADDR);
|
||
|
INIT_COMPLETION(dd->op_complete);
|
||
|
|
||
|
for (i = 0; i < AES_HW_MAX_ICQ_LENGTH - 1; i++) {
|
||
|
do {
|
||
|
value = aes_readl(dd, TEGRA_AES_INTR_STATUS);
|
||
|
eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD;
|
||
|
icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD;
|
||
|
} while (eng_busy & (!icq_empty));
|
||
|
aes_writel(dd, cmdq[i], TEGRA_AES_ICMDQUE_WR);
|
||
|
}
|
||
|
|
||
|
ret = wait_for_completion_timeout(&dd->op_complete,
|
||
|
msecs_to_jiffies(150));
|
||
|
if (ret == 0) {
|
||
|
dev_err(dd->dev, "timed out (0x%x)\n",
|
||
|
aes_readl(dd, TEGRA_AES_INTR_STATUS));
|
||
|
return -ETIMEDOUT;
|
||
|
}
|
||
|
|
||
|
aes_writel(dd, cmdq[AES_HW_MAX_ICQ_LENGTH - 1], TEGRA_AES_ICMDQUE_WR);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void aes_release_key_slot(struct tegra_aes_slot *slot)
|
||
|
{
|
||
|
if (slot->slot_num == SSK_SLOT_NUM)
|
||
|
return;
|
||
|
|
||
|
spin_lock(&list_lock);
|
||
|
list_add_tail(&slot->node, &dev_list);
|
||
|
slot = NULL;
|
||
|
spin_unlock(&list_lock);
|
||
|
}
|
||
|
|
||
|
static struct tegra_aes_slot *aes_find_key_slot(void)
|
||
|
{
|
||
|
struct tegra_aes_slot *slot = NULL;
|
||
|
struct list_head *new_head;
|
||
|
int empty;
|
||
|
|
||
|
spin_lock(&list_lock);
|
||
|
empty = list_empty(&dev_list);
|
||
|
if (!empty) {
|
||
|
slot = list_entry(&dev_list, struct tegra_aes_slot, node);
|
||
|
new_head = dev_list.next;
|
||
|
list_del(&dev_list);
|
||
|
dev_list.next = new_head->next;
|
||
|
dev_list.prev = NULL;
|
||
|
}
|
||
|
spin_unlock(&list_lock);
|
||
|
|
||
|
return slot;
|
||
|
}
|
||
|
|
||
|
static int aes_set_key(struct tegra_aes_dev *dd)
|
||
|
{
|
||
|
u32 value, cmdq[2];
|
||
|
struct tegra_aes_ctx *ctx = dd->ctx;
|
||
|
int eng_busy, icq_empty, dma_busy;
|
||
|
bool use_ssk = false;
|
||
|
|
||
|
/* use ssk? */
|
||
|
if (!dd->ctx->slot) {
|
||
|
dev_dbg(dd->dev, "using ssk");
|
||
|
dd->ctx->slot = &ssk;
|
||
|
use_ssk = true;
|
||
|
}
|
||
|
|
||
|
/* enable key schedule generation in hardware */
|
||
|
value = aes_readl(dd, TEGRA_AES_SECURE_CONFIG_EXT);
|
||
|
value &= ~TEGRA_AES_SECURE_KEY_SCH_DIS_FIELD;
|
||
|
aes_writel(dd, value, TEGRA_AES_SECURE_CONFIG_EXT);
|
||
|
|
||
|
/* select the key slot */
|
||
|
value = aes_readl(dd, TEGRA_AES_SECURE_CONFIG);
|
||
|
value &= ~TEGRA_AES_SECURE_KEY_INDEX_FIELD;
|
||
|
value |= (ctx->slot->slot_num << TEGRA_AES_SECURE_KEY_INDEX_SHIFT);
|
||
|
aes_writel(dd, value, TEGRA_AES_SECURE_CONFIG);
|
||
|
|
||
|
if (use_ssk)
|
||
|
return 0;
|
||
|
|
||
|
/* copy the key table from sdram to vram */
|
||
|
cmdq[0] = CMD_MEMDMAVD << CMDQ_OPCODE_SHIFT |
|
||
|
MEMDMA_DIR_DTOVRAM << MEMDMA_DIR_SHIFT |
|
||
|
AES_HW_KEY_TABLE_LENGTH_BYTES / sizeof(u32) <<
|
||
|
MEMDMA_NUM_WORDS_SHIFT;
|
||
|
cmdq[1] = (u32)dd->ivkey_phys_base;
|
||
|
|
||
|
aes_writel(dd, cmdq[0], TEGRA_AES_ICMDQUE_WR);
|
||
|
aes_writel(dd, cmdq[1], TEGRA_AES_ICMDQUE_WR);
|
||
|
|
||
|
do {
|
||
|
value = aes_readl(dd, TEGRA_AES_INTR_STATUS);
|
||
|
eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD;
|
||
|
icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD;
|
||
|
dma_busy = value & TEGRA_AES_DMA_BUSY_FIELD;
|
||
|
} while (eng_busy & (!icq_empty) & dma_busy);
|
||
|
|
||
|
/* settable command to get key into internal registers */
|
||
|
value = CMD_SETTABLE << CMDQ_OPCODE_SHIFT |
|
||
|
SUBCMD_CRYPTO_TABLE_SEL << CMDQ_TABLESEL_SHIFT |
|
||
|
SUBCMD_VRAM_SEL << CMDQ_VRAMSEL_SHIFT |
|
||
|
(SUBCMD_KEY_TABLE_SEL | ctx->slot->slot_num) <<
|
||
|
CMDQ_KEYTABLEID_SHIFT;
|
||
|
aes_writel(dd, value, TEGRA_AES_ICMDQUE_WR);
|
||
|
|
||
|
do {
|
||
|
value = aes_readl(dd, TEGRA_AES_INTR_STATUS);
|
||
|
eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD;
|
||
|
icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD;
|
||
|
} while (eng_busy & (!icq_empty));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int tegra_aes_handle_req(struct tegra_aes_dev *dd)
|
||
|
{
|
||
|
struct crypto_async_request *async_req, *backlog;
|
||
|
struct crypto_ablkcipher *tfm;
|
||
|
struct tegra_aes_ctx *ctx;
|
||
|
struct tegra_aes_reqctx *rctx;
|
||
|
struct ablkcipher_request *req;
|
||
|
unsigned long flags;
|
||
|
int dma_max = AES_HW_DMA_BUFFER_SIZE_BYTES;
|
||
|
int ret = 0, nblocks, total;
|
||
|
int count = 0;
|
||
|
dma_addr_t addr_in, addr_out;
|
||
|
struct scatterlist *in_sg, *out_sg;
|
||
|
|
||
|
if (!dd)
|
||
|
return -EINVAL;
|
||
|
|
||
|
spin_lock_irqsave(&dd->lock, flags);
|
||
|
backlog = crypto_get_backlog(&dd->queue);
|
||
|
async_req = crypto_dequeue_request(&dd->queue);
|
||
|
if (!async_req)
|
||
|
clear_bit(FLAGS_BUSY, &dd->flags);
|
||
|
spin_unlock_irqrestore(&dd->lock, flags);
|
||
|
|
||
|
if (!async_req)
|
||
|
return -ENODATA;
|
||
|
|
||
|
if (backlog)
|
||
|
backlog->complete(backlog, -EINPROGRESS);
|
||
|
|
||
|
req = ablkcipher_request_cast(async_req);
|
||
|
|
||
|
dev_dbg(dd->dev, "%s: get new req\n", __func__);
|
||
|
|
||
|
if (!req->src || !req->dst)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* take mutex to access the aes hw */
|
||
|
mutex_lock(&aes_lock);
|
||
|
|
||
|
/* assign new request to device */
|
||
|
dd->req = req;
|
||
|
dd->total = req->nbytes;
|
||
|
dd->in_offset = 0;
|
||
|
dd->in_sg = req->src;
|
||
|
dd->out_offset = 0;
|
||
|
dd->out_sg = req->dst;
|
||
|
|
||
|
in_sg = dd->in_sg;
|
||
|
out_sg = dd->out_sg;
|
||
|
|
||
|
total = dd->total;
|
||
|
|
||
|
tfm = crypto_ablkcipher_reqtfm(req);
|
||
|
rctx = ablkcipher_request_ctx(req);
|
||
|
ctx = crypto_ablkcipher_ctx(tfm);
|
||
|
rctx->mode &= FLAGS_MODE_MASK;
|
||
|
dd->flags = (dd->flags & ~FLAGS_MODE_MASK) | rctx->mode;
|
||
|
|
||
|
dd->iv = (u8 *)req->info;
|
||
|
dd->ivlen = crypto_ablkcipher_ivsize(tfm);
|
||
|
|
||
|
/* assign new context to device */
|
||
|
ctx->dd = dd;
|
||
|
dd->ctx = ctx;
|
||
|
|
||
|
if (ctx->flags & FLAGS_NEW_KEY) {
|
||
|
/* copy the key */
|
||
|
memcpy(dd->ivkey_base, ctx->key, ctx->keylen);
|
||
|
memset(dd->ivkey_base + ctx->keylen, 0, AES_HW_KEY_TABLE_LENGTH_BYTES - ctx->keylen);
|
||
|
aes_set_key(dd);
|
||
|
ctx->flags &= ~FLAGS_NEW_KEY;
|
||
|
}
|
||
|
|
||
|
if (((dd->flags & FLAGS_CBC) || (dd->flags & FLAGS_OFB)) && dd->iv) {
|
||
|
/* set iv to the aes hw slot
|
||
|
* Hw generates updated iv only after iv is set in slot.
|
||
|
* So key and iv is passed asynchronously.
|
||
|
*/
|
||
|
memcpy(dd->buf_in, dd->iv, dd->ivlen);
|
||
|
|
||
|
ret = aes_start_crypt(dd, (u32)dd->dma_buf_in,
|
||
|
dd->dma_buf_out, 1, FLAGS_CBC, false);
|
||
|
if (ret < 0) {
|
||
|
dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
|
||
|
goto out;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
while (total) {
|
||
|
dev_dbg(dd->dev, "remain: %d\n", total);
|
||
|
ret = dma_map_sg(dd->dev, in_sg, 1, DMA_TO_DEVICE);
|
||
|
if (!ret) {
|
||
|
dev_err(dd->dev, "dma_map_sg() error\n");
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
ret = dma_map_sg(dd->dev, out_sg, 1, DMA_FROM_DEVICE);
|
||
|
if (!ret) {
|
||
|
dev_err(dd->dev, "dma_map_sg() error\n");
|
||
|
dma_unmap_sg(dd->dev, dd->in_sg,
|
||
|
1, DMA_TO_DEVICE);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
addr_in = sg_dma_address(in_sg);
|
||
|
addr_out = sg_dma_address(out_sg);
|
||
|
dd->flags |= FLAGS_FAST;
|
||
|
count = min_t(int, sg_dma_len(in_sg), dma_max);
|
||
|
WARN_ON(sg_dma_len(in_sg) != sg_dma_len(out_sg));
|
||
|
nblocks = DIV_ROUND_UP(count, AES_BLOCK_SIZE);
|
||
|
|
||
|
ret = aes_start_crypt(dd, addr_in, addr_out, nblocks,
|
||
|
dd->flags, true);
|
||
|
|
||
|
dma_unmap_sg(dd->dev, out_sg, 1, DMA_FROM_DEVICE);
|
||
|
dma_unmap_sg(dd->dev, in_sg, 1, DMA_TO_DEVICE);
|
||
|
|
||
|
if (ret < 0) {
|
||
|
dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
|
||
|
goto out;
|
||
|
}
|
||
|
dd->flags &= ~FLAGS_FAST;
|
||
|
|
||
|
dev_dbg(dd->dev, "out: copied %d\n", count);
|
||
|
total -= count;
|
||
|
in_sg = sg_next(in_sg);
|
||
|
out_sg = sg_next(out_sg);
|
||
|
WARN_ON(((total != 0) && (!in_sg || !out_sg)));
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
mutex_unlock(&aes_lock);
|
||
|
|
||
|
dd->total = total;
|
||
|
|
||
|
if (dd->req->base.complete)
|
||
|
dd->req->base.complete(&dd->req->base, ret);
|
||
|
|
||
|
dev_dbg(dd->dev, "%s: exit\n", __func__);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int tegra_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
|
||
|
unsigned int keylen)
|
||
|
{
|
||
|
struct tegra_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
|
||
|
struct tegra_aes_dev *dd = aes_dev;
|
||
|
struct tegra_aes_slot *key_slot;
|
||
|
|
||
|
if ((keylen != AES_KEYSIZE_128) && (keylen != AES_KEYSIZE_192) &&
|
||
|
(keylen != AES_KEYSIZE_256)) {
|
||
|
dev_err(dd->dev, "unsupported key size\n");
|
||
|
crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
dev_dbg(dd->dev, "keylen: %d\n", keylen);
|
||
|
|
||
|
ctx->dd = dd;
|
||
|
|
||
|
if (key) {
|
||
|
if (!ctx->slot) {
|
||
|
key_slot = aes_find_key_slot();
|
||
|
if (!key_slot) {
|
||
|
dev_err(dd->dev, "no empty slot\n");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
ctx->slot = key_slot;
|
||
|
}
|
||
|
|
||
|
memcpy(ctx->key, key, keylen);
|
||
|
ctx->keylen = keylen;
|
||
|
}
|
||
|
|
||
|
ctx->flags |= FLAGS_NEW_KEY;
|
||
|
dev_dbg(dd->dev, "done\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void aes_workqueue_handler(struct work_struct *work)
|
||
|
{
|
||
|
struct tegra_aes_dev *dd = aes_dev;
|
||
|
int ret;
|
||
|
|
||
|
ret = clk_enable(dd->aes_clk);
|
||
|
if (ret)
|
||
|
BUG_ON("clock enable failed");
|
||
|
|
||
|
/* empty the crypto queue and then return */
|
||
|
do {
|
||
|
ret = tegra_aes_handle_req(dd);
|
||
|
} while (!ret);
|
||
|
|
||
|
clk_disable(dd->aes_clk);
|
||
|
}
|
||
|
|
||
|
static irqreturn_t aes_irq(int irq, void *dev_id)
|
||
|
{
|
||
|
struct tegra_aes_dev *dd = (struct tegra_aes_dev *)dev_id;
|
||
|
u32 value = aes_readl(dd, TEGRA_AES_INTR_STATUS);
|
||
|
int busy = test_bit(FLAGS_BUSY, &dd->flags);
|
||
|
|
||
|
if (!busy) {
|
||
|
dev_dbg(dd->dev, "spurious interrupt\n");
|
||
|
return IRQ_NONE;
|
||
|
}
|
||
|
|
||
|
dev_dbg(dd->dev, "irq_stat: 0x%x\n", value);
|
||
|
if (value & TEGRA_AES_INT_ERROR_MASK)
|
||
|
aes_writel(dd, TEGRA_AES_INT_ERROR_MASK, TEGRA_AES_INTR_STATUS);
|
||
|
|
||
|
if (!(value & TEGRA_AES_ENGINE_BUSY_FIELD))
|
||
|
complete(&dd->op_complete);
|
||
|
else
|
||
|
return IRQ_NONE;
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
static int tegra_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
|
||
|
{
|
||
|
struct tegra_aes_reqctx *rctx = ablkcipher_request_ctx(req);
|
||
|
struct tegra_aes_dev *dd = aes_dev;
|
||
|
unsigned long flags;
|
||
|
int err = 0;
|
||
|
int busy;
|
||
|
|
||
|
dev_dbg(dd->dev, "nbytes: %d, enc: %d, cbc: %d, ofb: %d\n",
|
||
|
req->nbytes, !!(mode & FLAGS_ENCRYPT),
|
||
|
!!(mode & FLAGS_CBC), !!(mode & FLAGS_OFB));
|
||
|
|
||
|
rctx->mode = mode;
|
||
|
|
||
|
spin_lock_irqsave(&dd->lock, flags);
|
||
|
err = ablkcipher_enqueue_request(&dd->queue, req);
|
||
|
busy = test_and_set_bit(FLAGS_BUSY, &dd->flags);
|
||
|
spin_unlock_irqrestore(&dd->lock, flags);
|
||
|
|
||
|
if (!busy)
|
||
|
queue_work(aes_wq, &aes_work);
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static int tegra_aes_ecb_encrypt(struct ablkcipher_request *req)
|
||
|
{
|
||
|
return tegra_aes_crypt(req, FLAGS_ENCRYPT);
|
||
|
}
|
||
|
|
||
|
static int tegra_aes_ecb_decrypt(struct ablkcipher_request *req)
|
||
|
{
|
||
|
return tegra_aes_crypt(req, 0);
|
||
|
}
|
||
|
|
||
|
static int tegra_aes_cbc_encrypt(struct ablkcipher_request *req)
|
||
|
{
|
||
|
return tegra_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CBC);
|
||
|
}
|
||
|
|
||
|
static int tegra_aes_cbc_decrypt(struct ablkcipher_request *req)
|
||
|
{
|
||
|
return tegra_aes_crypt(req, FLAGS_CBC);
|
||
|
}
|
||
|
|
||
|
static int tegra_aes_ofb_encrypt(struct ablkcipher_request *req)
|
||
|
{
|
||
|
return tegra_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_OFB);
|
||
|
}
|
||
|
|
||
|
static int tegra_aes_ofb_decrypt(struct ablkcipher_request *req)
|
||
|
{
|
||
|
return tegra_aes_crypt(req, FLAGS_OFB);
|
||
|
}
|
||
|
|
||
|
static int tegra_aes_get_random(struct crypto_rng *tfm, u8 *rdata,
|
||
|
unsigned int dlen)
|
||
|
{
|
||
|
struct tegra_aes_dev *dd = aes_dev;
|
||
|
struct tegra_aes_ctx *ctx = &rng_ctx;
|
||
|
int ret, i;
|
||
|
u8 *dest = rdata, *dt = dd->dt;
|
||
|
|
||
|
/* take mutex to access the aes hw */
|
||
|
mutex_lock(&aes_lock);
|
||
|
|
||
|
ret = clk_enable(dd->aes_clk);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ctx->dd = dd;
|
||
|
dd->ctx = ctx;
|
||
|
dd->flags = FLAGS_ENCRYPT | FLAGS_RNG;
|
||
|
|
||
|
memcpy(dd->buf_in, dt, DEFAULT_RNG_BLK_SZ);
|
||
|
|
||
|
ret = aes_start_crypt(dd, (u32)dd->dma_buf_in,
|
||
|
(u32)dd->dma_buf_out, 1, dd->flags, true);
|
||
|
if (ret < 0) {
|
||
|
dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
|
||
|
dlen = ret;
|
||
|
goto out;
|
||
|
}
|
||
|
memcpy(dest, dd->buf_out, dlen);
|
||
|
|
||
|
/* update the DT */
|
||
|
for (i = DEFAULT_RNG_BLK_SZ - 1; i >= 0; i--) {
|
||
|
dt[i] += 1;
|
||
|
if (dt[i] != 0)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
clk_disable(dd->aes_clk);
|
||
|
mutex_unlock(&aes_lock);
|
||
|
|
||
|
dev_dbg(dd->dev, "%s: done\n", __func__);
|
||
|
return dlen;
|
||
|
}
|
||
|
|
||
|
static int tegra_aes_rng_reset(struct crypto_rng *tfm, u8 *seed,
|
||
|
unsigned int slen)
|
||
|
{
|
||
|
struct tegra_aes_dev *dd = aes_dev;
|
||
|
struct tegra_aes_ctx *ctx = &rng_ctx;
|
||
|
struct tegra_aes_slot *key_slot;
|
||
|
struct timespec ts;
|
||
|
int ret = 0;
|
||
|
u64 nsec, tmp[2];
|
||
|
u8 *dt;
|
||
|
|
||
|
if (!ctx || !dd) {
|
||
|
dev_err(dd->dev, "ctx=0x%x, dd=0x%x\n",
|
||
|
(unsigned int)ctx, (unsigned int)dd);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (slen < (DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128)) {
|
||
|
dev_err(dd->dev, "seed size invalid");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
/* take mutex to access the aes hw */
|
||
|
mutex_lock(&aes_lock);
|
||
|
|
||
|
if (!ctx->slot) {
|
||
|
key_slot = aes_find_key_slot();
|
||
|
if (!key_slot) {
|
||
|
dev_err(dd->dev, "no empty slot\n");
|
||
|
mutex_unlock(&aes_lock);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
ctx->slot = key_slot;
|
||
|
}
|
||
|
|
||
|
ctx->dd = dd;
|
||
|
dd->ctx = ctx;
|
||
|
dd->ctr = 0;
|
||
|
|
||
|
ctx->keylen = AES_KEYSIZE_128;
|
||
|
ctx->flags |= FLAGS_NEW_KEY;
|
||
|
|
||
|
/* copy the key to the key slot */
|
||
|
memcpy(dd->ivkey_base, seed + DEFAULT_RNG_BLK_SZ, AES_KEYSIZE_128);
|
||
|
memset(dd->ivkey_base + AES_KEYSIZE_128, 0, AES_HW_KEY_TABLE_LENGTH_BYTES - AES_KEYSIZE_128);
|
||
|
|
||
|
dd->iv = seed;
|
||
|
dd->ivlen = slen;
|
||
|
|
||
|
dd->flags = FLAGS_ENCRYPT | FLAGS_RNG;
|
||
|
|
||
|
ret = clk_enable(dd->aes_clk);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
aes_set_key(dd);
|
||
|
|
||
|
/* set seed to the aes hw slot */
|
||
|
memcpy(dd->buf_in, dd->iv, DEFAULT_RNG_BLK_SZ);
|
||
|
ret = aes_start_crypt(dd, (u32)dd->dma_buf_in,
|
||
|
dd->dma_buf_out, 1, FLAGS_CBC, false);
|
||
|
if (ret < 0) {
|
||
|
dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (dd->ivlen >= (2 * DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128)) {
|
||
|
dt = dd->iv + DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128;
|
||
|
} else {
|
||
|
getnstimeofday(&ts);
|
||
|
nsec = timespec_to_ns(&ts);
|
||
|
do_div(nsec, 1000);
|
||
|
nsec ^= dd->ctr << 56;
|
||
|
dd->ctr++;
|
||
|
tmp[0] = nsec;
|
||
|
tmp[1] = tegra_chip_uid();
|
||
|
dt = (u8 *)tmp;
|
||
|
}
|
||
|
memcpy(dd->dt, dt, DEFAULT_RNG_BLK_SZ);
|
||
|
|
||
|
out:
|
||
|
clk_disable(dd->aes_clk);
|
||
|
mutex_unlock(&aes_lock);
|
||
|
|
||
|
dev_dbg(dd->dev, "%s: done\n", __func__);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int tegra_aes_cra_init(struct crypto_tfm *tfm)
|
||
|
{
|
||
|
tfm->crt_ablkcipher.reqsize = sizeof(struct tegra_aes_reqctx);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void tegra_aes_cra_exit(struct crypto_tfm *tfm)
|
||
|
{
|
||
|
struct tegra_aes_ctx *ctx =
|
||
|
crypto_ablkcipher_ctx((struct crypto_ablkcipher *)tfm);
|
||
|
|
||
|
if (ctx && ctx->slot)
|
||
|
aes_release_key_slot(ctx->slot);
|
||
|
}
|
||
|
|
||
|
static struct crypto_alg algs[] = {
|
||
|
{
|
||
|
.cra_name = "ecb(aes)",
|
||
|
.cra_driver_name = "ecb-aes-tegra",
|
||
|
.cra_priority = 300,
|
||
|
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
|
||
|
.cra_blocksize = AES_BLOCK_SIZE,
|
||
|
.cra_alignmask = 3,
|
||
|
.cra_type = &crypto_ablkcipher_type,
|
||
|
.cra_u.ablkcipher = {
|
||
|
.min_keysize = AES_MIN_KEY_SIZE,
|
||
|
.max_keysize = AES_MAX_KEY_SIZE,
|
||
|
.setkey = tegra_aes_setkey,
|
||
|
.encrypt = tegra_aes_ecb_encrypt,
|
||
|
.decrypt = tegra_aes_ecb_decrypt,
|
||
|
},
|
||
|
}, {
|
||
|
.cra_name = "cbc(aes)",
|
||
|
.cra_driver_name = "cbc-aes-tegra",
|
||
|
.cra_priority = 300,
|
||
|
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
|
||
|
.cra_blocksize = AES_BLOCK_SIZE,
|
||
|
.cra_alignmask = 3,
|
||
|
.cra_type = &crypto_ablkcipher_type,
|
||
|
.cra_u.ablkcipher = {
|
||
|
.min_keysize = AES_MIN_KEY_SIZE,
|
||
|
.max_keysize = AES_MAX_KEY_SIZE,
|
||
|
.ivsize = AES_MIN_KEY_SIZE,
|
||
|
.setkey = tegra_aes_setkey,
|
||
|
.encrypt = tegra_aes_cbc_encrypt,
|
||
|
.decrypt = tegra_aes_cbc_decrypt,
|
||
|
}
|
||
|
}, {
|
||
|
.cra_name = "ofb(aes)",
|
||
|
.cra_driver_name = "ofb-aes-tegra",
|
||
|
.cra_priority = 300,
|
||
|
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
|
||
|
.cra_blocksize = AES_BLOCK_SIZE,
|
||
|
.cra_alignmask = 3,
|
||
|
.cra_type = &crypto_ablkcipher_type,
|
||
|
.cra_u.ablkcipher = {
|
||
|
.min_keysize = AES_MIN_KEY_SIZE,
|
||
|
.max_keysize = AES_MAX_KEY_SIZE,
|
||
|
.ivsize = AES_MIN_KEY_SIZE,
|
||
|
.setkey = tegra_aes_setkey,
|
||
|
.encrypt = tegra_aes_ofb_encrypt,
|
||
|
.decrypt = tegra_aes_ofb_decrypt,
|
||
|
}
|
||
|
}, {
|
||
|
.cra_name = "ansi_cprng",
|
||
|
.cra_driver_name = "rng-aes-tegra",
|
||
|
.cra_flags = CRYPTO_ALG_TYPE_RNG,
|
||
|
.cra_ctxsize = sizeof(struct tegra_aes_ctx),
|
||
|
.cra_type = &crypto_rng_type,
|
||
|
.cra_u.rng = {
|
||
|
.rng_make_random = tegra_aes_get_random,
|
||
|
.rng_reset = tegra_aes_rng_reset,
|
||
|
.seedsize = AES_KEYSIZE_128 + (2 * DEFAULT_RNG_BLK_SZ),
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
static int tegra_aes_probe(struct platform_device *pdev)
|
||
|
{
|
||
|
struct device *dev = &pdev->dev;
|
||
|
struct tegra_aes_dev *dd;
|
||
|
struct resource *res;
|
||
|
int err = -ENOMEM, i = 0, j;
|
||
|
|
||
|
dd = devm_kzalloc(dev, sizeof(struct tegra_aes_dev), GFP_KERNEL);
|
||
|
if (dd == NULL) {
|
||
|
dev_err(dev, "unable to alloc data struct.\n");
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
dd->dev = dev;
|
||
|
platform_set_drvdata(pdev, dd);
|
||
|
|
||
|
dd->slots = devm_kzalloc(dev, sizeof(struct tegra_aes_slot) *
|
||
|
AES_NR_KEYSLOTS, GFP_KERNEL);
|
||
|
if (dd->slots == NULL) {
|
||
|
dev_err(dev, "unable to alloc slot struct.\n");
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
spin_lock_init(&dd->lock);
|
||
|
crypto_init_queue(&dd->queue, TEGRA_AES_QUEUE_LENGTH);
|
||
|
|
||
|
/* Get the module base address */
|
||
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
||
|
if (!res) {
|
||
|
dev_err(dev, "invalid resource type: base\n");
|
||
|
err = -ENODEV;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (!devm_request_mem_region(&pdev->dev, res->start,
|
||
|
resource_size(res),
|
||
|
dev_name(&pdev->dev))) {
|
||
|
dev_err(&pdev->dev, "Couldn't request MEM resource\n");
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
dd->io_base = devm_ioremap(dev, res->start, resource_size(res));
|
||
|
if (!dd->io_base) {
|
||
|
dev_err(dev, "can't ioremap register space\n");
|
||
|
err = -ENOMEM;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* Initialize the vde clock */
|
||
|
dd->aes_clk = clk_get(dev, "vde");
|
||
|
if (IS_ERR(dd->aes_clk)) {
|
||
|
dev_err(dev, "iclock intialization failed.\n");
|
||
|
err = -ENODEV;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
err = clk_set_rate(dd->aes_clk, ULONG_MAX);
|
||
|
if (err) {
|
||
|
dev_err(dd->dev, "iclk set_rate fail(%d)\n", err);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* the foll contiguous memory is allocated as follows -
|
||
|
* - hardware key table
|
||
|
* - key schedule
|
||
|
*/
|
||
|
dd->ivkey_base = dma_alloc_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES,
|
||
|
&dd->ivkey_phys_base,
|
||
|
GFP_KERNEL);
|
||
|
if (!dd->ivkey_base) {
|
||
|
dev_err(dev, "can not allocate iv/key buffer\n");
|
||
|
err = -ENOMEM;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
dd->buf_in = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
|
||
|
&dd->dma_buf_in, GFP_KERNEL);
|
||
|
if (!dd->buf_in) {
|
||
|
dev_err(dev, "can not allocate dma-in buffer\n");
|
||
|
err = -ENOMEM;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
dd->buf_out = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
|
||
|
&dd->dma_buf_out, GFP_KERNEL);
|
||
|
if (!dd->buf_out) {
|
||
|
dev_err(dev, "can not allocate dma-out buffer\n");
|
||
|
err = -ENOMEM;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
init_completion(&dd->op_complete);
|
||
|
aes_wq = alloc_workqueue("tegra_aes_wq", WQ_HIGHPRI | WQ_UNBOUND, 1);
|
||
|
if (!aes_wq) {
|
||
|
dev_err(dev, "alloc_workqueue failed\n");
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* get the irq */
|
||
|
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
|
||
|
if (!res) {
|
||
|
dev_err(dev, "invalid resource type: base\n");
|
||
|
err = -ENODEV;
|
||
|
goto out;
|
||
|
}
|
||
|
dd->irq = res->start;
|
||
|
|
||
|
err = devm_request_irq(dev, dd->irq, aes_irq, IRQF_TRIGGER_HIGH |
|
||
|
IRQF_SHARED, "tegra-aes", dd);
|
||
|
if (err) {
|
||
|
dev_err(dev, "request_irq failed\n");
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
mutex_init(&aes_lock);
|
||
|
INIT_LIST_HEAD(&dev_list);
|
||
|
|
||
|
spin_lock_init(&list_lock);
|
||
|
spin_lock(&list_lock);
|
||
|
for (i = 0; i < AES_NR_KEYSLOTS; i++) {
|
||
|
if (i == SSK_SLOT_NUM)
|
||
|
continue;
|
||
|
dd->slots[i].slot_num = i;
|
||
|
INIT_LIST_HEAD(&dd->slots[i].node);
|
||
|
list_add_tail(&dd->slots[i].node, &dev_list);
|
||
|
}
|
||
|
spin_unlock(&list_lock);
|
||
|
|
||
|
aes_dev = dd;
|
||
|
for (i = 0; i < ARRAY_SIZE(algs); i++) {
|
||
|
INIT_LIST_HEAD(&algs[i].cra_list);
|
||
|
|
||
|
algs[i].cra_priority = 300;
|
||
|
algs[i].cra_ctxsize = sizeof(struct tegra_aes_ctx);
|
||
|
algs[i].cra_module = THIS_MODULE;
|
||
|
algs[i].cra_init = tegra_aes_cra_init;
|
||
|
algs[i].cra_exit = tegra_aes_cra_exit;
|
||
|
|
||
|
err = crypto_register_alg(&algs[i]);
|
||
|
if (err)
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
dev_info(dev, "registered");
|
||
|
return 0;
|
||
|
|
||
|
out:
|
||
|
for (j = 0; j < i; j++)
|
||
|
crypto_unregister_alg(&algs[j]);
|
||
|
if (dd->ivkey_base)
|
||
|
dma_free_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES,
|
||
|
dd->ivkey_base, dd->ivkey_phys_base);
|
||
|
if (dd->buf_in)
|
||
|
dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
|
||
|
dd->buf_in, dd->dma_buf_in);
|
||
|
if (dd->buf_out)
|
||
|
dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
|
||
|
dd->buf_out, dd->dma_buf_out);
|
||
|
if (IS_ERR(dd->aes_clk))
|
||
|
clk_put(dd->aes_clk);
|
||
|
if (aes_wq)
|
||
|
destroy_workqueue(aes_wq);
|
||
|
spin_lock(&list_lock);
|
||
|
list_del(&dev_list);
|
||
|
spin_unlock(&list_lock);
|
||
|
|
||
|
aes_dev = NULL;
|
||
|
|
||
|
dev_err(dev, "%s: initialization failed.\n", __func__);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static int __devexit tegra_aes_remove(struct platform_device *pdev)
|
||
|
{
|
||
|
struct device *dev = &pdev->dev;
|
||
|
struct tegra_aes_dev *dd = platform_get_drvdata(pdev);
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < ARRAY_SIZE(algs); i++)
|
||
|
crypto_unregister_alg(&algs[i]);
|
||
|
|
||
|
cancel_work_sync(&aes_work);
|
||
|
destroy_workqueue(aes_wq);
|
||
|
spin_lock(&list_lock);
|
||
|
list_del(&dev_list);
|
||
|
spin_unlock(&list_lock);
|
||
|
|
||
|
dma_free_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES,
|
||
|
dd->ivkey_base, dd->ivkey_phys_base);
|
||
|
dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
|
||
|
dd->buf_in, dd->dma_buf_in);
|
||
|
dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
|
||
|
dd->buf_out, dd->dma_buf_out);
|
||
|
clk_put(dd->aes_clk);
|
||
|
aes_dev = NULL;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct of_device_id tegra_aes_of_match[] __devinitdata = {
|
||
|
{ .compatible = "nvidia,tegra20-aes", },
|
||
|
{ .compatible = "nvidia,tegra30-aes", },
|
||
|
{ },
|
||
|
};
|
||
|
|
||
|
static struct platform_driver tegra_aes_driver = {
|
||
|
.probe = tegra_aes_probe,
|
||
|
.remove = __devexit_p(tegra_aes_remove),
|
||
|
.driver = {
|
||
|
.name = "tegra-aes",
|
||
|
.owner = THIS_MODULE,
|
||
|
.of_match_table = tegra_aes_of_match,
|
||
|
},
|
||
|
};
|
||
|
|
||
|
module_platform_driver(tegra_aes_driver);
|
||
|
|
||
|
MODULE_DESCRIPTION("Tegra AES/OFB/CPRNG hw acceleration support.");
|
||
|
MODULE_AUTHOR("NVIDIA Corporation");
|
||
|
MODULE_LICENSE("GPL v2");
|