1438 lines
34 KiB
C
1438 lines
34 KiB
C
|
/*
|
||
|
* Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
|
||
|
* Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
|
||
|
*
|
||
|
* Authors:
|
||
|
* Paul Mackerras <paulus@au1.ibm.com>
|
||
|
* Alexander Graf <agraf@suse.de>
|
||
|
* Kevin Wolf <mail@kevin-wolf.de>
|
||
|
*
|
||
|
* Description: KVM functions specific to running on Book 3S
|
||
|
* processors in hypervisor mode (specifically POWER7 and later).
|
||
|
*
|
||
|
* This file is derived from arch/powerpc/kvm/book3s.c,
|
||
|
* by Alexander Graf <agraf@suse.de>.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License, version 2, as
|
||
|
* published by the Free Software Foundation.
|
||
|
*/
|
||
|
|
||
|
#include <linux/kvm_host.h>
|
||
|
#include <linux/err.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/preempt.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/export.h>
|
||
|
#include <linux/fs.h>
|
||
|
#include <linux/anon_inodes.h>
|
||
|
#include <linux/cpumask.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <linux/page-flags.h>
|
||
|
|
||
|
#include <asm/reg.h>
|
||
|
#include <asm/cputable.h>
|
||
|
#include <asm/cacheflush.h>
|
||
|
#include <asm/tlbflush.h>
|
||
|
#include <asm/uaccess.h>
|
||
|
#include <asm/io.h>
|
||
|
#include <asm/kvm_ppc.h>
|
||
|
#include <asm/kvm_book3s.h>
|
||
|
#include <asm/mmu_context.h>
|
||
|
#include <asm/lppaca.h>
|
||
|
#include <asm/processor.h>
|
||
|
#include <asm/cputhreads.h>
|
||
|
#include <asm/page.h>
|
||
|
#include <asm/hvcall.h>
|
||
|
#include <asm/switch_to.h>
|
||
|
#include <linux/gfp.h>
|
||
|
#include <linux/vmalloc.h>
|
||
|
#include <linux/highmem.h>
|
||
|
#include <linux/hugetlb.h>
|
||
|
|
||
|
/* #define EXIT_DEBUG */
|
||
|
/* #define EXIT_DEBUG_SIMPLE */
|
||
|
/* #define EXIT_DEBUG_INT */
|
||
|
|
||
|
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
|
||
|
static int kvmppc_hv_setup_rma(struct kvm_vcpu *vcpu);
|
||
|
|
||
|
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
||
|
{
|
||
|
local_paca->kvm_hstate.kvm_vcpu = vcpu;
|
||
|
local_paca->kvm_hstate.kvm_vcore = vcpu->arch.vcore;
|
||
|
}
|
||
|
|
||
|
void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
|
||
|
{
|
||
|
vcpu->arch.shregs.msr = msr;
|
||
|
kvmppc_end_cede(vcpu);
|
||
|
}
|
||
|
|
||
|
void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
|
||
|
{
|
||
|
vcpu->arch.pvr = pvr;
|
||
|
}
|
||
|
|
||
|
void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
int r;
|
||
|
|
||
|
pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
|
||
|
pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
|
||
|
vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
|
||
|
for (r = 0; r < 16; ++r)
|
||
|
pr_err("r%2d = %.16lx r%d = %.16lx\n",
|
||
|
r, kvmppc_get_gpr(vcpu, r),
|
||
|
r+16, kvmppc_get_gpr(vcpu, r+16));
|
||
|
pr_err("ctr = %.16lx lr = %.16lx\n",
|
||
|
vcpu->arch.ctr, vcpu->arch.lr);
|
||
|
pr_err("srr0 = %.16llx srr1 = %.16llx\n",
|
||
|
vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
|
||
|
pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
|
||
|
vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
|
||
|
pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
|
||
|
vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
|
||
|
pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
|
||
|
vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
|
||
|
pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
|
||
|
pr_err("fault dar = %.16lx dsisr = %.8x\n",
|
||
|
vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
|
||
|
pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
|
||
|
for (r = 0; r < vcpu->arch.slb_max; ++r)
|
||
|
pr_err(" ESID = %.16llx VSID = %.16llx\n",
|
||
|
vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
|
||
|
pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
|
||
|
vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
|
||
|
vcpu->arch.last_inst);
|
||
|
}
|
||
|
|
||
|
struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
|
||
|
{
|
||
|
int r;
|
||
|
struct kvm_vcpu *v, *ret = NULL;
|
||
|
|
||
|
mutex_lock(&kvm->lock);
|
||
|
kvm_for_each_vcpu(r, v, kvm) {
|
||
|
if (v->vcpu_id == id) {
|
||
|
ret = v;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
mutex_unlock(&kvm->lock);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
|
||
|
{
|
||
|
vpa->shared_proc = 1;
|
||
|
vpa->yield_count = 1;
|
||
|
}
|
||
|
|
||
|
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
|
||
|
unsigned long flags,
|
||
|
unsigned long vcpuid, unsigned long vpa)
|
||
|
{
|
||
|
struct kvm *kvm = vcpu->kvm;
|
||
|
unsigned long len, nb;
|
||
|
void *va;
|
||
|
struct kvm_vcpu *tvcpu;
|
||
|
int err = H_PARAMETER;
|
||
|
|
||
|
tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
|
||
|
if (!tvcpu)
|
||
|
return H_PARAMETER;
|
||
|
|
||
|
flags >>= 63 - 18;
|
||
|
flags &= 7;
|
||
|
if (flags == 0 || flags == 4)
|
||
|
return H_PARAMETER;
|
||
|
if (flags < 4) {
|
||
|
if (vpa & 0x7f)
|
||
|
return H_PARAMETER;
|
||
|
if (flags >= 2 && !tvcpu->arch.vpa)
|
||
|
return H_RESOURCE;
|
||
|
/* registering new area; convert logical addr to real */
|
||
|
va = kvmppc_pin_guest_page(kvm, vpa, &nb);
|
||
|
if (va == NULL)
|
||
|
return H_PARAMETER;
|
||
|
if (flags <= 1)
|
||
|
len = *(unsigned short *)(va + 4);
|
||
|
else
|
||
|
len = *(unsigned int *)(va + 4);
|
||
|
if (len > nb)
|
||
|
goto out_unpin;
|
||
|
switch (flags) {
|
||
|
case 1: /* register VPA */
|
||
|
if (len < 640)
|
||
|
goto out_unpin;
|
||
|
if (tvcpu->arch.vpa)
|
||
|
kvmppc_unpin_guest_page(kvm, vcpu->arch.vpa);
|
||
|
tvcpu->arch.vpa = va;
|
||
|
init_vpa(vcpu, va);
|
||
|
break;
|
||
|
case 2: /* register DTL */
|
||
|
if (len < 48)
|
||
|
goto out_unpin;
|
||
|
len -= len % 48;
|
||
|
if (tvcpu->arch.dtl)
|
||
|
kvmppc_unpin_guest_page(kvm, vcpu->arch.dtl);
|
||
|
tvcpu->arch.dtl = va;
|
||
|
tvcpu->arch.dtl_end = va + len;
|
||
|
break;
|
||
|
case 3: /* register SLB shadow buffer */
|
||
|
if (len < 16)
|
||
|
goto out_unpin;
|
||
|
if (tvcpu->arch.slb_shadow)
|
||
|
kvmppc_unpin_guest_page(kvm, vcpu->arch.slb_shadow);
|
||
|
tvcpu->arch.slb_shadow = va;
|
||
|
break;
|
||
|
}
|
||
|
} else {
|
||
|
switch (flags) {
|
||
|
case 5: /* unregister VPA */
|
||
|
if (tvcpu->arch.slb_shadow || tvcpu->arch.dtl)
|
||
|
return H_RESOURCE;
|
||
|
if (!tvcpu->arch.vpa)
|
||
|
break;
|
||
|
kvmppc_unpin_guest_page(kvm, tvcpu->arch.vpa);
|
||
|
tvcpu->arch.vpa = NULL;
|
||
|
break;
|
||
|
case 6: /* unregister DTL */
|
||
|
if (!tvcpu->arch.dtl)
|
||
|
break;
|
||
|
kvmppc_unpin_guest_page(kvm, tvcpu->arch.dtl);
|
||
|
tvcpu->arch.dtl = NULL;
|
||
|
break;
|
||
|
case 7: /* unregister SLB shadow buffer */
|
||
|
if (!tvcpu->arch.slb_shadow)
|
||
|
break;
|
||
|
kvmppc_unpin_guest_page(kvm, tvcpu->arch.slb_shadow);
|
||
|
tvcpu->arch.slb_shadow = NULL;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
return H_SUCCESS;
|
||
|
|
||
|
out_unpin:
|
||
|
kvmppc_unpin_guest_page(kvm, va);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
unsigned long req = kvmppc_get_gpr(vcpu, 3);
|
||
|
unsigned long target, ret = H_SUCCESS;
|
||
|
struct kvm_vcpu *tvcpu;
|
||
|
|
||
|
switch (req) {
|
||
|
case H_ENTER:
|
||
|
ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
|
||
|
kvmppc_get_gpr(vcpu, 5),
|
||
|
kvmppc_get_gpr(vcpu, 6),
|
||
|
kvmppc_get_gpr(vcpu, 7));
|
||
|
break;
|
||
|
case H_CEDE:
|
||
|
break;
|
||
|
case H_PROD:
|
||
|
target = kvmppc_get_gpr(vcpu, 4);
|
||
|
tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
|
||
|
if (!tvcpu) {
|
||
|
ret = H_PARAMETER;
|
||
|
break;
|
||
|
}
|
||
|
tvcpu->arch.prodded = 1;
|
||
|
smp_mb();
|
||
|
if (vcpu->arch.ceded) {
|
||
|
if (waitqueue_active(&vcpu->wq)) {
|
||
|
wake_up_interruptible(&vcpu->wq);
|
||
|
vcpu->stat.halt_wakeup++;
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
case H_CONFER:
|
||
|
break;
|
||
|
case H_REGISTER_VPA:
|
||
|
ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
|
||
|
kvmppc_get_gpr(vcpu, 5),
|
||
|
kvmppc_get_gpr(vcpu, 6));
|
||
|
break;
|
||
|
default:
|
||
|
return RESUME_HOST;
|
||
|
}
|
||
|
kvmppc_set_gpr(vcpu, 3, ret);
|
||
|
vcpu->arch.hcall_needed = 0;
|
||
|
return RESUME_GUEST;
|
||
|
}
|
||
|
|
||
|
static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
|
||
|
struct task_struct *tsk)
|
||
|
{
|
||
|
int r = RESUME_HOST;
|
||
|
|
||
|
vcpu->stat.sum_exits++;
|
||
|
|
||
|
run->exit_reason = KVM_EXIT_UNKNOWN;
|
||
|
run->ready_for_interrupt_injection = 1;
|
||
|
switch (vcpu->arch.trap) {
|
||
|
/* We're good on these - the host merely wanted to get our attention */
|
||
|
case BOOK3S_INTERRUPT_HV_DECREMENTER:
|
||
|
vcpu->stat.dec_exits++;
|
||
|
r = RESUME_GUEST;
|
||
|
break;
|
||
|
case BOOK3S_INTERRUPT_EXTERNAL:
|
||
|
vcpu->stat.ext_intr_exits++;
|
||
|
r = RESUME_GUEST;
|
||
|
break;
|
||
|
case BOOK3S_INTERRUPT_PERFMON:
|
||
|
r = RESUME_GUEST;
|
||
|
break;
|
||
|
case BOOK3S_INTERRUPT_PROGRAM:
|
||
|
{
|
||
|
ulong flags;
|
||
|
/*
|
||
|
* Normally program interrupts are delivered directly
|
||
|
* to the guest by the hardware, but we can get here
|
||
|
* as a result of a hypervisor emulation interrupt
|
||
|
* (e40) getting turned into a 700 by BML RTAS.
|
||
|
*/
|
||
|
flags = vcpu->arch.shregs.msr & 0x1f0000ull;
|
||
|
kvmppc_core_queue_program(vcpu, flags);
|
||
|
r = RESUME_GUEST;
|
||
|
break;
|
||
|
}
|
||
|
case BOOK3S_INTERRUPT_SYSCALL:
|
||
|
{
|
||
|
/* hcall - punt to userspace */
|
||
|
int i;
|
||
|
|
||
|
if (vcpu->arch.shregs.msr & MSR_PR) {
|
||
|
/* sc 1 from userspace - reflect to guest syscall */
|
||
|
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
|
||
|
r = RESUME_GUEST;
|
||
|
break;
|
||
|
}
|
||
|
run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
|
||
|
for (i = 0; i < 9; ++i)
|
||
|
run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
|
||
|
run->exit_reason = KVM_EXIT_PAPR_HCALL;
|
||
|
vcpu->arch.hcall_needed = 1;
|
||
|
r = RESUME_HOST;
|
||
|
break;
|
||
|
}
|
||
|
/*
|
||
|
* We get these next two if the guest accesses a page which it thinks
|
||
|
* it has mapped but which is not actually present, either because
|
||
|
* it is for an emulated I/O device or because the corresonding
|
||
|
* host page has been paged out. Any other HDSI/HISI interrupts
|
||
|
* have been handled already.
|
||
|
*/
|
||
|
case BOOK3S_INTERRUPT_H_DATA_STORAGE:
|
||
|
r = kvmppc_book3s_hv_page_fault(run, vcpu,
|
||
|
vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
|
||
|
break;
|
||
|
case BOOK3S_INTERRUPT_H_INST_STORAGE:
|
||
|
r = kvmppc_book3s_hv_page_fault(run, vcpu,
|
||
|
kvmppc_get_pc(vcpu), 0);
|
||
|
break;
|
||
|
/*
|
||
|
* This occurs if the guest executes an illegal instruction.
|
||
|
* We just generate a program interrupt to the guest, since
|
||
|
* we don't emulate any guest instructions at this stage.
|
||
|
*/
|
||
|
case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
|
||
|
kvmppc_core_queue_program(vcpu, 0x80000);
|
||
|
r = RESUME_GUEST;
|
||
|
break;
|
||
|
default:
|
||
|
kvmppc_dump_regs(vcpu);
|
||
|
printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
|
||
|
vcpu->arch.trap, kvmppc_get_pc(vcpu),
|
||
|
vcpu->arch.shregs.msr);
|
||
|
r = RESUME_HOST;
|
||
|
BUG();
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
|
||
|
struct kvm_sregs *sregs)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
sregs->pvr = vcpu->arch.pvr;
|
||
|
|
||
|
memset(sregs, 0, sizeof(struct kvm_sregs));
|
||
|
for (i = 0; i < vcpu->arch.slb_max; i++) {
|
||
|
sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
|
||
|
sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
|
||
|
struct kvm_sregs *sregs)
|
||
|
{
|
||
|
int i, j;
|
||
|
|
||
|
kvmppc_set_pvr(vcpu, sregs->pvr);
|
||
|
|
||
|
j = 0;
|
||
|
for (i = 0; i < vcpu->arch.slb_nr; i++) {
|
||
|
if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
|
||
|
vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
|
||
|
vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
|
||
|
++j;
|
||
|
}
|
||
|
}
|
||
|
vcpu->arch.slb_max = j;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
|
||
|
{
|
||
|
int r = -EINVAL;
|
||
|
|
||
|
switch (reg->id) {
|
||
|
case KVM_REG_PPC_HIOR:
|
||
|
r = put_user(0, (u64 __user *)reg->addr);
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
|
||
|
{
|
||
|
int r = -EINVAL;
|
||
|
|
||
|
switch (reg->id) {
|
||
|
case KVM_REG_PPC_HIOR:
|
||
|
{
|
||
|
u64 hior;
|
||
|
/* Only allow this to be set to zero */
|
||
|
r = get_user(hior, (u64 __user *)reg->addr);
|
||
|
if (!r && (hior != 0))
|
||
|
r = -EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
int kvmppc_core_check_processor_compat(void)
|
||
|
{
|
||
|
if (cpu_has_feature(CPU_FTR_HVMODE))
|
||
|
return 0;
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
|
||
|
{
|
||
|
struct kvm_vcpu *vcpu;
|
||
|
int err = -EINVAL;
|
||
|
int core;
|
||
|
struct kvmppc_vcore *vcore;
|
||
|
|
||
|
core = id / threads_per_core;
|
||
|
if (core >= KVM_MAX_VCORES)
|
||
|
goto out;
|
||
|
|
||
|
err = -ENOMEM;
|
||
|
vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
|
||
|
if (!vcpu)
|
||
|
goto out;
|
||
|
|
||
|
err = kvm_vcpu_init(vcpu, kvm, id);
|
||
|
if (err)
|
||
|
goto free_vcpu;
|
||
|
|
||
|
vcpu->arch.shared = &vcpu->arch.shregs;
|
||
|
vcpu->arch.last_cpu = -1;
|
||
|
vcpu->arch.mmcr[0] = MMCR0_FC;
|
||
|
vcpu->arch.ctrl = CTRL_RUNLATCH;
|
||
|
/* default to host PVR, since we can't spoof it */
|
||
|
vcpu->arch.pvr = mfspr(SPRN_PVR);
|
||
|
kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
|
||
|
|
||
|
kvmppc_mmu_book3s_hv_init(vcpu);
|
||
|
|
||
|
/*
|
||
|
* We consider the vcpu stopped until we see the first run ioctl for it.
|
||
|
*/
|
||
|
vcpu->arch.state = KVMPPC_VCPU_STOPPED;
|
||
|
|
||
|
init_waitqueue_head(&vcpu->arch.cpu_run);
|
||
|
|
||
|
mutex_lock(&kvm->lock);
|
||
|
vcore = kvm->arch.vcores[core];
|
||
|
if (!vcore) {
|
||
|
vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
|
||
|
if (vcore) {
|
||
|
INIT_LIST_HEAD(&vcore->runnable_threads);
|
||
|
spin_lock_init(&vcore->lock);
|
||
|
init_waitqueue_head(&vcore->wq);
|
||
|
}
|
||
|
kvm->arch.vcores[core] = vcore;
|
||
|
}
|
||
|
mutex_unlock(&kvm->lock);
|
||
|
|
||
|
if (!vcore)
|
||
|
goto free_vcpu;
|
||
|
|
||
|
spin_lock(&vcore->lock);
|
||
|
++vcore->num_threads;
|
||
|
spin_unlock(&vcore->lock);
|
||
|
vcpu->arch.vcore = vcore;
|
||
|
|
||
|
vcpu->arch.cpu_type = KVM_CPU_3S_64;
|
||
|
kvmppc_sanity_check(vcpu);
|
||
|
|
||
|
return vcpu;
|
||
|
|
||
|
free_vcpu:
|
||
|
kmem_cache_free(kvm_vcpu_cache, vcpu);
|
||
|
out:
|
||
|
return ERR_PTR(err);
|
||
|
}
|
||
|
|
||
|
void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
if (vcpu->arch.dtl)
|
||
|
kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl);
|
||
|
if (vcpu->arch.slb_shadow)
|
||
|
kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow);
|
||
|
if (vcpu->arch.vpa)
|
||
|
kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa);
|
||
|
kvm_vcpu_uninit(vcpu);
|
||
|
kmem_cache_free(kvm_vcpu_cache, vcpu);
|
||
|
}
|
||
|
|
||
|
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
unsigned long dec_nsec, now;
|
||
|
|
||
|
now = get_tb();
|
||
|
if (now > vcpu->arch.dec_expires) {
|
||
|
/* decrementer has already gone negative */
|
||
|
kvmppc_core_queue_dec(vcpu);
|
||
|
kvmppc_core_prepare_to_enter(vcpu);
|
||
|
return;
|
||
|
}
|
||
|
dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
|
||
|
/ tb_ticks_per_sec;
|
||
|
hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
|
||
|
HRTIMER_MODE_REL);
|
||
|
vcpu->arch.timer_running = 1;
|
||
|
}
|
||
|
|
||
|
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
vcpu->arch.ceded = 0;
|
||
|
if (vcpu->arch.timer_running) {
|
||
|
hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
|
||
|
vcpu->arch.timer_running = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
|
||
|
extern void xics_wake_cpu(int cpu);
|
||
|
|
||
|
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
|
||
|
struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct kvm_vcpu *v;
|
||
|
|
||
|
if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
|
||
|
return;
|
||
|
vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
|
||
|
--vc->n_runnable;
|
||
|
++vc->n_busy;
|
||
|
/* decrement the physical thread id of each following vcpu */
|
||
|
v = vcpu;
|
||
|
list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list)
|
||
|
--v->arch.ptid;
|
||
|
list_del(&vcpu->arch.run_list);
|
||
|
}
|
||
|
|
||
|
static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
int cpu;
|
||
|
struct paca_struct *tpaca;
|
||
|
struct kvmppc_vcore *vc = vcpu->arch.vcore;
|
||
|
|
||
|
if (vcpu->arch.timer_running) {
|
||
|
hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
|
||
|
vcpu->arch.timer_running = 0;
|
||
|
}
|
||
|
cpu = vc->pcpu + vcpu->arch.ptid;
|
||
|
tpaca = &paca[cpu];
|
||
|
tpaca->kvm_hstate.kvm_vcpu = vcpu;
|
||
|
tpaca->kvm_hstate.kvm_vcore = vc;
|
||
|
tpaca->kvm_hstate.napping = 0;
|
||
|
vcpu->cpu = vc->pcpu;
|
||
|
smp_wmb();
|
||
|
#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
|
||
|
if (vcpu->arch.ptid) {
|
||
|
tpaca->cpu_start = 0x80;
|
||
|
wmb();
|
||
|
xics_wake_cpu(cpu);
|
||
|
++vc->n_woken;
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
HMT_low();
|
||
|
i = 0;
|
||
|
while (vc->nap_count < vc->n_woken) {
|
||
|
if (++i >= 1000000) {
|
||
|
pr_err("kvmppc_wait_for_nap timeout %d %d\n",
|
||
|
vc->nap_count, vc->n_woken);
|
||
|
break;
|
||
|
}
|
||
|
cpu_relax();
|
||
|
}
|
||
|
HMT_medium();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check that we are on thread 0 and that any other threads in
|
||
|
* this core are off-line.
|
||
|
*/
|
||
|
static int on_primary_thread(void)
|
||
|
{
|
||
|
int cpu = smp_processor_id();
|
||
|
int thr = cpu_thread_in_core(cpu);
|
||
|
|
||
|
if (thr)
|
||
|
return 0;
|
||
|
while (++thr < threads_per_core)
|
||
|
if (cpu_online(cpu + thr))
|
||
|
return 0;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Run a set of guest threads on a physical core.
|
||
|
* Called with vc->lock held.
|
||
|
*/
|
||
|
static int kvmppc_run_core(struct kvmppc_vcore *vc)
|
||
|
{
|
||
|
struct kvm_vcpu *vcpu, *vcpu0, *vnext;
|
||
|
long ret;
|
||
|
u64 now;
|
||
|
int ptid;
|
||
|
|
||
|
/* don't start if any threads have a signal pending */
|
||
|
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
|
||
|
if (signal_pending(vcpu->arch.run_task))
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* Make sure we are running on thread 0, and that
|
||
|
* secondary threads are offline.
|
||
|
* XXX we should also block attempts to bring any
|
||
|
* secondary threads online.
|
||
|
*/
|
||
|
if (threads_per_core > 1 && !on_primary_thread()) {
|
||
|
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
|
||
|
vcpu->arch.ret = -EBUSY;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Assign physical thread IDs, first to non-ceded vcpus
|
||
|
* and then to ceded ones.
|
||
|
*/
|
||
|
ptid = 0;
|
||
|
vcpu0 = NULL;
|
||
|
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
|
||
|
if (!vcpu->arch.ceded) {
|
||
|
if (!ptid)
|
||
|
vcpu0 = vcpu;
|
||
|
vcpu->arch.ptid = ptid++;
|
||
|
}
|
||
|
}
|
||
|
if (!vcpu0)
|
||
|
return 0; /* nothing to run */
|
||
|
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
|
||
|
if (vcpu->arch.ceded)
|
||
|
vcpu->arch.ptid = ptid++;
|
||
|
|
||
|
vc->n_woken = 0;
|
||
|
vc->nap_count = 0;
|
||
|
vc->entry_exit_count = 0;
|
||
|
vc->vcore_state = VCORE_RUNNING;
|
||
|
vc->in_guest = 0;
|
||
|
vc->pcpu = smp_processor_id();
|
||
|
vc->napping_threads = 0;
|
||
|
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
|
||
|
kvmppc_start_thread(vcpu);
|
||
|
|
||
|
preempt_disable();
|
||
|
spin_unlock(&vc->lock);
|
||
|
|
||
|
kvm_guest_enter();
|
||
|
__kvmppc_vcore_entry(NULL, vcpu0);
|
||
|
|
||
|
spin_lock(&vc->lock);
|
||
|
/* disable sending of IPIs on virtual external irqs */
|
||
|
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
|
||
|
vcpu->cpu = -1;
|
||
|
/* wait for secondary threads to finish writing their state to memory */
|
||
|
if (vc->nap_count < vc->n_woken)
|
||
|
kvmppc_wait_for_nap(vc);
|
||
|
/* prevent other vcpu threads from doing kvmppc_start_thread() now */
|
||
|
vc->vcore_state = VCORE_EXITING;
|
||
|
spin_unlock(&vc->lock);
|
||
|
|
||
|
/* make sure updates to secondary vcpu structs are visible now */
|
||
|
smp_mb();
|
||
|
kvm_guest_exit();
|
||
|
|
||
|
preempt_enable();
|
||
|
kvm_resched(vcpu);
|
||
|
|
||
|
now = get_tb();
|
||
|
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
|
||
|
/* cancel pending dec exception if dec is positive */
|
||
|
if (now < vcpu->arch.dec_expires &&
|
||
|
kvmppc_core_pending_dec(vcpu))
|
||
|
kvmppc_core_dequeue_dec(vcpu);
|
||
|
|
||
|
ret = RESUME_GUEST;
|
||
|
if (vcpu->arch.trap)
|
||
|
ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
|
||
|
vcpu->arch.run_task);
|
||
|
|
||
|
vcpu->arch.ret = ret;
|
||
|
vcpu->arch.trap = 0;
|
||
|
|
||
|
if (vcpu->arch.ceded) {
|
||
|
if (ret != RESUME_GUEST)
|
||
|
kvmppc_end_cede(vcpu);
|
||
|
else
|
||
|
kvmppc_set_timer(vcpu);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
spin_lock(&vc->lock);
|
||
|
out:
|
||
|
vc->vcore_state = VCORE_INACTIVE;
|
||
|
list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
|
||
|
arch.run_list) {
|
||
|
if (vcpu->arch.ret != RESUME_GUEST) {
|
||
|
kvmppc_remove_runnable(vc, vcpu);
|
||
|
wake_up(&vcpu->arch.cpu_run);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Wait for some other vcpu thread to execute us, and
|
||
|
* wake us up when we need to handle something in the host.
|
||
|
*/
|
||
|
static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
|
||
|
{
|
||
|
DEFINE_WAIT(wait);
|
||
|
|
||
|
prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
|
||
|
if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
|
||
|
schedule();
|
||
|
finish_wait(&vcpu->arch.cpu_run, &wait);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* All the vcpus in this vcore are idle, so wait for a decrementer
|
||
|
* or external interrupt to one of the vcpus. vc->lock is held.
|
||
|
*/
|
||
|
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
|
||
|
{
|
||
|
DEFINE_WAIT(wait);
|
||
|
struct kvm_vcpu *v;
|
||
|
int all_idle = 1;
|
||
|
|
||
|
prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
|
||
|
vc->vcore_state = VCORE_SLEEPING;
|
||
|
spin_unlock(&vc->lock);
|
||
|
list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
|
||
|
if (!v->arch.ceded || v->arch.pending_exceptions) {
|
||
|
all_idle = 0;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (all_idle)
|
||
|
schedule();
|
||
|
finish_wait(&vc->wq, &wait);
|
||
|
spin_lock(&vc->lock);
|
||
|
vc->vcore_state = VCORE_INACTIVE;
|
||
|
}
|
||
|
|
||
|
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
int n_ceded;
|
||
|
int prev_state;
|
||
|
struct kvmppc_vcore *vc;
|
||
|
struct kvm_vcpu *v, *vn;
|
||
|
|
||
|
kvm_run->exit_reason = 0;
|
||
|
vcpu->arch.ret = RESUME_GUEST;
|
||
|
vcpu->arch.trap = 0;
|
||
|
|
||
|
/*
|
||
|
* Synchronize with other threads in this virtual core
|
||
|
*/
|
||
|
vc = vcpu->arch.vcore;
|
||
|
spin_lock(&vc->lock);
|
||
|
vcpu->arch.ceded = 0;
|
||
|
vcpu->arch.run_task = current;
|
||
|
vcpu->arch.kvm_run = kvm_run;
|
||
|
prev_state = vcpu->arch.state;
|
||
|
vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
|
||
|
list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
|
||
|
++vc->n_runnable;
|
||
|
|
||
|
/*
|
||
|
* This happens the first time this is called for a vcpu.
|
||
|
* If the vcore is already running, we may be able to start
|
||
|
* this thread straight away and have it join in.
|
||
|
*/
|
||
|
if (prev_state == KVMPPC_VCPU_STOPPED) {
|
||
|
if (vc->vcore_state == VCORE_RUNNING &&
|
||
|
VCORE_EXIT_COUNT(vc) == 0) {
|
||
|
vcpu->arch.ptid = vc->n_runnable - 1;
|
||
|
kvmppc_start_thread(vcpu);
|
||
|
}
|
||
|
|
||
|
} else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST)
|
||
|
--vc->n_busy;
|
||
|
|
||
|
while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
|
||
|
!signal_pending(current)) {
|
||
|
if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) {
|
||
|
spin_unlock(&vc->lock);
|
||
|
kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
|
||
|
spin_lock(&vc->lock);
|
||
|
continue;
|
||
|
}
|
||
|
n_ceded = 0;
|
||
|
list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
|
||
|
n_ceded += v->arch.ceded;
|
||
|
if (n_ceded == vc->n_runnable)
|
||
|
kvmppc_vcore_blocked(vc);
|
||
|
else
|
||
|
kvmppc_run_core(vc);
|
||
|
|
||
|
list_for_each_entry_safe(v, vn, &vc->runnable_threads,
|
||
|
arch.run_list) {
|
||
|
kvmppc_core_prepare_to_enter(v);
|
||
|
if (signal_pending(v->arch.run_task)) {
|
||
|
kvmppc_remove_runnable(vc, v);
|
||
|
v->stat.signal_exits++;
|
||
|
v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
|
||
|
v->arch.ret = -EINTR;
|
||
|
wake_up(&v->arch.cpu_run);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (signal_pending(current)) {
|
||
|
if (vc->vcore_state == VCORE_RUNNING ||
|
||
|
vc->vcore_state == VCORE_EXITING) {
|
||
|
spin_unlock(&vc->lock);
|
||
|
kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
|
||
|
spin_lock(&vc->lock);
|
||
|
}
|
||
|
if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
|
||
|
kvmppc_remove_runnable(vc, vcpu);
|
||
|
vcpu->stat.signal_exits++;
|
||
|
kvm_run->exit_reason = KVM_EXIT_INTR;
|
||
|
vcpu->arch.ret = -EINTR;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
spin_unlock(&vc->lock);
|
||
|
return vcpu->arch.ret;
|
||
|
}
|
||
|
|
||
|
int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
int r;
|
||
|
|
||
|
if (!vcpu->arch.sane) {
|
||
|
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
kvmppc_core_prepare_to_enter(vcpu);
|
||
|
|
||
|
/* No need to go into the guest when all we'll do is come back out */
|
||
|
if (signal_pending(current)) {
|
||
|
run->exit_reason = KVM_EXIT_INTR;
|
||
|
return -EINTR;
|
||
|
}
|
||
|
|
||
|
/* On the first time here, set up VRMA or RMA */
|
||
|
if (!vcpu->kvm->arch.rma_setup_done) {
|
||
|
r = kvmppc_hv_setup_rma(vcpu);
|
||
|
if (r)
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
flush_fp_to_thread(current);
|
||
|
flush_altivec_to_thread(current);
|
||
|
flush_vsx_to_thread(current);
|
||
|
vcpu->arch.wqp = &vcpu->arch.vcore->wq;
|
||
|
vcpu->arch.pgdir = current->mm->pgd;
|
||
|
|
||
|
do {
|
||
|
r = kvmppc_run_vcpu(run, vcpu);
|
||
|
|
||
|
if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
|
||
|
!(vcpu->arch.shregs.msr & MSR_PR)) {
|
||
|
r = kvmppc_pseries_do_hcall(vcpu);
|
||
|
kvmppc_core_prepare_to_enter(vcpu);
|
||
|
}
|
||
|
} while (r == RESUME_GUEST);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static long kvmppc_stt_npages(unsigned long window_size)
|
||
|
{
|
||
|
return ALIGN((window_size >> SPAPR_TCE_SHIFT)
|
||
|
* sizeof(u64), PAGE_SIZE) / PAGE_SIZE;
|
||
|
}
|
||
|
|
||
|
static void release_spapr_tce_table(struct kvmppc_spapr_tce_table *stt)
|
||
|
{
|
||
|
struct kvm *kvm = stt->kvm;
|
||
|
int i;
|
||
|
|
||
|
mutex_lock(&kvm->lock);
|
||
|
list_del(&stt->list);
|
||
|
for (i = 0; i < kvmppc_stt_npages(stt->window_size); i++)
|
||
|
__free_page(stt->pages[i]);
|
||
|
kfree(stt);
|
||
|
mutex_unlock(&kvm->lock);
|
||
|
|
||
|
kvm_put_kvm(kvm);
|
||
|
}
|
||
|
|
||
|
static int kvm_spapr_tce_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
||
|
{
|
||
|
struct kvmppc_spapr_tce_table *stt = vma->vm_file->private_data;
|
||
|
struct page *page;
|
||
|
|
||
|
if (vmf->pgoff >= kvmppc_stt_npages(stt->window_size))
|
||
|
return VM_FAULT_SIGBUS;
|
||
|
|
||
|
page = stt->pages[vmf->pgoff];
|
||
|
get_page(page);
|
||
|
vmf->page = page;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct vm_operations_struct kvm_spapr_tce_vm_ops = {
|
||
|
.fault = kvm_spapr_tce_fault,
|
||
|
};
|
||
|
|
||
|
static int kvm_spapr_tce_mmap(struct file *file, struct vm_area_struct *vma)
|
||
|
{
|
||
|
vma->vm_ops = &kvm_spapr_tce_vm_ops;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int kvm_spapr_tce_release(struct inode *inode, struct file *filp)
|
||
|
{
|
||
|
struct kvmppc_spapr_tce_table *stt = filp->private_data;
|
||
|
|
||
|
release_spapr_tce_table(stt);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct file_operations kvm_spapr_tce_fops = {
|
||
|
.mmap = kvm_spapr_tce_mmap,
|
||
|
.release = kvm_spapr_tce_release,
|
||
|
};
|
||
|
|
||
|
long kvm_vm_ioctl_create_spapr_tce(struct kvm *kvm,
|
||
|
struct kvm_create_spapr_tce *args)
|
||
|
{
|
||
|
struct kvmppc_spapr_tce_table *stt = NULL;
|
||
|
long npages;
|
||
|
int ret = -ENOMEM;
|
||
|
int i;
|
||
|
|
||
|
/* Check this LIOBN hasn't been previously allocated */
|
||
|
list_for_each_entry(stt, &kvm->arch.spapr_tce_tables, list) {
|
||
|
if (stt->liobn == args->liobn)
|
||
|
return -EBUSY;
|
||
|
}
|
||
|
|
||
|
npages = kvmppc_stt_npages(args->window_size);
|
||
|
|
||
|
stt = kzalloc(sizeof(*stt) + npages* sizeof(struct page *),
|
||
|
GFP_KERNEL);
|
||
|
if (!stt)
|
||
|
goto fail;
|
||
|
|
||
|
stt->liobn = args->liobn;
|
||
|
stt->window_size = args->window_size;
|
||
|
stt->kvm = kvm;
|
||
|
|
||
|
for (i = 0; i < npages; i++) {
|
||
|
stt->pages[i] = alloc_page(GFP_KERNEL | __GFP_ZERO);
|
||
|
if (!stt->pages[i])
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
kvm_get_kvm(kvm);
|
||
|
|
||
|
mutex_lock(&kvm->lock);
|
||
|
list_add(&stt->list, &kvm->arch.spapr_tce_tables);
|
||
|
|
||
|
mutex_unlock(&kvm->lock);
|
||
|
|
||
|
return anon_inode_getfd("kvm-spapr-tce", &kvm_spapr_tce_fops,
|
||
|
stt, O_RDWR);
|
||
|
|
||
|
fail:
|
||
|
if (stt) {
|
||
|
for (i = 0; i < npages; i++)
|
||
|
if (stt->pages[i])
|
||
|
__free_page(stt->pages[i]);
|
||
|
|
||
|
kfree(stt);
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* Work out RMLS (real mode limit selector) field value for a given RMA size.
|
||
|
Assumes POWER7 or PPC970. */
|
||
|
static inline int lpcr_rmls(unsigned long rma_size)
|
||
|
{
|
||
|
switch (rma_size) {
|
||
|
case 32ul << 20: /* 32 MB */
|
||
|
if (cpu_has_feature(CPU_FTR_ARCH_206))
|
||
|
return 8; /* only supported on POWER7 */
|
||
|
return -1;
|
||
|
case 64ul << 20: /* 64 MB */
|
||
|
return 3;
|
||
|
case 128ul << 20: /* 128 MB */
|
||
|
return 7;
|
||
|
case 256ul << 20: /* 256 MB */
|
||
|
return 4;
|
||
|
case 1ul << 30: /* 1 GB */
|
||
|
return 2;
|
||
|
case 16ul << 30: /* 16 GB */
|
||
|
return 1;
|
||
|
case 256ul << 30: /* 256 GB */
|
||
|
return 0;
|
||
|
default:
|
||
|
return -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
||
|
{
|
||
|
struct kvmppc_linear_info *ri = vma->vm_file->private_data;
|
||
|
struct page *page;
|
||
|
|
||
|
if (vmf->pgoff >= ri->npages)
|
||
|
return VM_FAULT_SIGBUS;
|
||
|
|
||
|
page = pfn_to_page(ri->base_pfn + vmf->pgoff);
|
||
|
get_page(page);
|
||
|
vmf->page = page;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct vm_operations_struct kvm_rma_vm_ops = {
|
||
|
.fault = kvm_rma_fault,
|
||
|
};
|
||
|
|
||
|
static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
|
||
|
{
|
||
|
vma->vm_flags |= VM_RESERVED;
|
||
|
vma->vm_ops = &kvm_rma_vm_ops;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int kvm_rma_release(struct inode *inode, struct file *filp)
|
||
|
{
|
||
|
struct kvmppc_linear_info *ri = filp->private_data;
|
||
|
|
||
|
kvm_release_rma(ri);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct file_operations kvm_rma_fops = {
|
||
|
.mmap = kvm_rma_mmap,
|
||
|
.release = kvm_rma_release,
|
||
|
};
|
||
|
|
||
|
long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
|
||
|
{
|
||
|
struct kvmppc_linear_info *ri;
|
||
|
long fd;
|
||
|
|
||
|
ri = kvm_alloc_rma();
|
||
|
if (!ri)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
|
||
|
if (fd < 0)
|
||
|
kvm_release_rma(ri);
|
||
|
|
||
|
ret->rma_size = ri->npages << PAGE_SHIFT;
|
||
|
return fd;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Get (and clear) the dirty memory log for a memory slot.
|
||
|
*/
|
||
|
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
|
||
|
{
|
||
|
struct kvm_memory_slot *memslot;
|
||
|
int r;
|
||
|
unsigned long n;
|
||
|
|
||
|
mutex_lock(&kvm->slots_lock);
|
||
|
|
||
|
r = -EINVAL;
|
||
|
if (log->slot >= KVM_MEMORY_SLOTS)
|
||
|
goto out;
|
||
|
|
||
|
memslot = id_to_memslot(kvm->memslots, log->slot);
|
||
|
r = -ENOENT;
|
||
|
if (!memslot->dirty_bitmap)
|
||
|
goto out;
|
||
|
|
||
|
n = kvm_dirty_bitmap_bytes(memslot);
|
||
|
memset(memslot->dirty_bitmap, 0, n);
|
||
|
|
||
|
r = kvmppc_hv_get_dirty_log(kvm, memslot);
|
||
|
if (r)
|
||
|
goto out;
|
||
|
|
||
|
r = -EFAULT;
|
||
|
if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
|
||
|
goto out;
|
||
|
|
||
|
r = 0;
|
||
|
out:
|
||
|
mutex_unlock(&kvm->slots_lock);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static unsigned long slb_pgsize_encoding(unsigned long psize)
|
||
|
{
|
||
|
unsigned long senc = 0;
|
||
|
|
||
|
if (psize > 0x1000) {
|
||
|
senc = SLB_VSID_L;
|
||
|
if (psize == 0x10000)
|
||
|
senc |= SLB_VSID_LP_01;
|
||
|
}
|
||
|
return senc;
|
||
|
}
|
||
|
|
||
|
int kvmppc_core_prepare_memory_region(struct kvm *kvm,
|
||
|
struct kvm_userspace_memory_region *mem)
|
||
|
{
|
||
|
unsigned long npages;
|
||
|
unsigned long *phys;
|
||
|
|
||
|
/* Allocate a slot_phys array */
|
||
|
phys = kvm->arch.slot_phys[mem->slot];
|
||
|
if (!kvm->arch.using_mmu_notifiers && !phys) {
|
||
|
npages = mem->memory_size >> PAGE_SHIFT;
|
||
|
phys = vzalloc(npages * sizeof(unsigned long));
|
||
|
if (!phys)
|
||
|
return -ENOMEM;
|
||
|
kvm->arch.slot_phys[mem->slot] = phys;
|
||
|
kvm->arch.slot_npages[mem->slot] = npages;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void unpin_slot(struct kvm *kvm, int slot_id)
|
||
|
{
|
||
|
unsigned long *physp;
|
||
|
unsigned long j, npages, pfn;
|
||
|
struct page *page;
|
||
|
|
||
|
physp = kvm->arch.slot_phys[slot_id];
|
||
|
npages = kvm->arch.slot_npages[slot_id];
|
||
|
if (physp) {
|
||
|
spin_lock(&kvm->arch.slot_phys_lock);
|
||
|
for (j = 0; j < npages; j++) {
|
||
|
if (!(physp[j] & KVMPPC_GOT_PAGE))
|
||
|
continue;
|
||
|
pfn = physp[j] >> PAGE_SHIFT;
|
||
|
page = pfn_to_page(pfn);
|
||
|
SetPageDirty(page);
|
||
|
put_page(page);
|
||
|
}
|
||
|
kvm->arch.slot_phys[slot_id] = NULL;
|
||
|
spin_unlock(&kvm->arch.slot_phys_lock);
|
||
|
vfree(physp);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void kvmppc_core_commit_memory_region(struct kvm *kvm,
|
||
|
struct kvm_userspace_memory_region *mem)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static int kvmppc_hv_setup_rma(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
int err = 0;
|
||
|
struct kvm *kvm = vcpu->kvm;
|
||
|
struct kvmppc_linear_info *ri = NULL;
|
||
|
unsigned long hva;
|
||
|
struct kvm_memory_slot *memslot;
|
||
|
struct vm_area_struct *vma;
|
||
|
unsigned long lpcr, senc;
|
||
|
unsigned long psize, porder;
|
||
|
unsigned long rma_size;
|
||
|
unsigned long rmls;
|
||
|
unsigned long *physp;
|
||
|
unsigned long i, npages;
|
||
|
|
||
|
mutex_lock(&kvm->lock);
|
||
|
if (kvm->arch.rma_setup_done)
|
||
|
goto out; /* another vcpu beat us to it */
|
||
|
|
||
|
/* Look up the memslot for guest physical address 0 */
|
||
|
memslot = gfn_to_memslot(kvm, 0);
|
||
|
|
||
|
/* We must have some memory at 0 by now */
|
||
|
err = -EINVAL;
|
||
|
if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
|
||
|
goto out;
|
||
|
|
||
|
/* Look up the VMA for the start of this memory slot */
|
||
|
hva = memslot->userspace_addr;
|
||
|
down_read(¤t->mm->mmap_sem);
|
||
|
vma = find_vma(current->mm, hva);
|
||
|
if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
|
||
|
goto up_out;
|
||
|
|
||
|
psize = vma_kernel_pagesize(vma);
|
||
|
porder = __ilog2(psize);
|
||
|
|
||
|
/* Is this one of our preallocated RMAs? */
|
||
|
if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
|
||
|
hva == vma->vm_start)
|
||
|
ri = vma->vm_file->private_data;
|
||
|
|
||
|
up_read(¤t->mm->mmap_sem);
|
||
|
|
||
|
if (!ri) {
|
||
|
/* On POWER7, use VRMA; on PPC970, give up */
|
||
|
err = -EPERM;
|
||
|
if (cpu_has_feature(CPU_FTR_ARCH_201)) {
|
||
|
pr_err("KVM: CPU requires an RMO\n");
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* We can handle 4k, 64k or 16M pages in the VRMA */
|
||
|
err = -EINVAL;
|
||
|
if (!(psize == 0x1000 || psize == 0x10000 ||
|
||
|
psize == 0x1000000))
|
||
|
goto out;
|
||
|
|
||
|
/* Update VRMASD field in the LPCR */
|
||
|
senc = slb_pgsize_encoding(psize);
|
||
|
kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
|
||
|
(VRMA_VSID << SLB_VSID_SHIFT_1T);
|
||
|
lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
|
||
|
lpcr |= senc << (LPCR_VRMASD_SH - 4);
|
||
|
kvm->arch.lpcr = lpcr;
|
||
|
|
||
|
/* Create HPTEs in the hash page table for the VRMA */
|
||
|
kvmppc_map_vrma(vcpu, memslot, porder);
|
||
|
|
||
|
} else {
|
||
|
/* Set up to use an RMO region */
|
||
|
rma_size = ri->npages;
|
||
|
if (rma_size > memslot->npages)
|
||
|
rma_size = memslot->npages;
|
||
|
rma_size <<= PAGE_SHIFT;
|
||
|
rmls = lpcr_rmls(rma_size);
|
||
|
err = -EINVAL;
|
||
|
if (rmls < 0) {
|
||
|
pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
|
||
|
goto out;
|
||
|
}
|
||
|
atomic_inc(&ri->use_count);
|
||
|
kvm->arch.rma = ri;
|
||
|
|
||
|
/* Update LPCR and RMOR */
|
||
|
lpcr = kvm->arch.lpcr;
|
||
|
if (cpu_has_feature(CPU_FTR_ARCH_201)) {
|
||
|
/* PPC970; insert RMLS value (split field) in HID4 */
|
||
|
lpcr &= ~((1ul << HID4_RMLS0_SH) |
|
||
|
(3ul << HID4_RMLS2_SH));
|
||
|
lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
|
||
|
((rmls & 3) << HID4_RMLS2_SH);
|
||
|
/* RMOR is also in HID4 */
|
||
|
lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
|
||
|
<< HID4_RMOR_SH;
|
||
|
} else {
|
||
|
/* POWER7 */
|
||
|
lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
|
||
|
lpcr |= rmls << LPCR_RMLS_SH;
|
||
|
kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
|
||
|
}
|
||
|
kvm->arch.lpcr = lpcr;
|
||
|
pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
|
||
|
ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
|
||
|
|
||
|
/* Initialize phys addrs of pages in RMO */
|
||
|
npages = ri->npages;
|
||
|
porder = __ilog2(npages);
|
||
|
physp = kvm->arch.slot_phys[memslot->id];
|
||
|
spin_lock(&kvm->arch.slot_phys_lock);
|
||
|
for (i = 0; i < npages; ++i)
|
||
|
physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) + porder;
|
||
|
spin_unlock(&kvm->arch.slot_phys_lock);
|
||
|
}
|
||
|
|
||
|
/* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
|
||
|
smp_wmb();
|
||
|
kvm->arch.rma_setup_done = 1;
|
||
|
err = 0;
|
||
|
out:
|
||
|
mutex_unlock(&kvm->lock);
|
||
|
return err;
|
||
|
|
||
|
up_out:
|
||
|
up_read(¤t->mm->mmap_sem);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
int kvmppc_core_init_vm(struct kvm *kvm)
|
||
|
{
|
||
|
long r;
|
||
|
unsigned long lpcr;
|
||
|
|
||
|
/* Allocate hashed page table */
|
||
|
r = kvmppc_alloc_hpt(kvm);
|
||
|
if (r)
|
||
|
return r;
|
||
|
|
||
|
INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
|
||
|
|
||
|
kvm->arch.rma = NULL;
|
||
|
|
||
|
kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
|
||
|
|
||
|
if (cpu_has_feature(CPU_FTR_ARCH_201)) {
|
||
|
/* PPC970; HID4 is effectively the LPCR */
|
||
|
unsigned long lpid = kvm->arch.lpid;
|
||
|
kvm->arch.host_lpid = 0;
|
||
|
kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
|
||
|
lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
|
||
|
lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
|
||
|
((lpid & 0xf) << HID4_LPID5_SH);
|
||
|
} else {
|
||
|
/* POWER7; init LPCR for virtual RMA mode */
|
||
|
kvm->arch.host_lpid = mfspr(SPRN_LPID);
|
||
|
kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
|
||
|
lpcr &= LPCR_PECE | LPCR_LPES;
|
||
|
lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
|
||
|
LPCR_VPM0 | LPCR_VPM1;
|
||
|
kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
|
||
|
(VRMA_VSID << SLB_VSID_SHIFT_1T);
|
||
|
}
|
||
|
kvm->arch.lpcr = lpcr;
|
||
|
|
||
|
kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
|
||
|
spin_lock_init(&kvm->arch.slot_phys_lock);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void kvmppc_core_destroy_vm(struct kvm *kvm)
|
||
|
{
|
||
|
unsigned long i;
|
||
|
|
||
|
if (!kvm->arch.using_mmu_notifiers)
|
||
|
for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
|
||
|
unpin_slot(kvm, i);
|
||
|
|
||
|
if (kvm->arch.rma) {
|
||
|
kvm_release_rma(kvm->arch.rma);
|
||
|
kvm->arch.rma = NULL;
|
||
|
}
|
||
|
|
||
|
kvmppc_free_hpt(kvm);
|
||
|
WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
|
||
|
}
|
||
|
|
||
|
/* These are stubs for now */
|
||
|
void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
/* We don't need to emulate any privileged instructions or dcbz */
|
||
|
int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
|
||
|
unsigned int inst, int *advance)
|
||
|
{
|
||
|
return EMULATE_FAIL;
|
||
|
}
|
||
|
|
||
|
int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs)
|
||
|
{
|
||
|
return EMULATE_FAIL;
|
||
|
}
|
||
|
|
||
|
int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt)
|
||
|
{
|
||
|
return EMULATE_FAIL;
|
||
|
}
|
||
|
|
||
|
static int kvmppc_book3s_hv_init(void)
|
||
|
{
|
||
|
int r;
|
||
|
|
||
|
r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
|
||
|
|
||
|
if (r)
|
||
|
return r;
|
||
|
|
||
|
r = kvmppc_mmu_hv_init();
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static void kvmppc_book3s_hv_exit(void)
|
||
|
{
|
||
|
kvm_exit();
|
||
|
}
|
||
|
|
||
|
module_init(kvmppc_book3s_hv_init);
|
||
|
module_exit(kvmppc_book3s_hv_exit);
|