M7350/kernel/arch/arm/common/gic.c

1214 lines
31 KiB
C
Raw Normal View History

2024-09-09 08:52:07 +00:00
/*
* linux/arch/arm/common/gic.c
*
* Copyright (C) 2002 ARM Limited, All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Interrupt architecture for the GIC:
*
* o There is one Interrupt Distributor, which receives interrupts
* from system devices and sends them to the Interrupt Controllers.
*
* o There is one CPU Interface per CPU, which sends interrupts sent
* by the Distributor, and interrupts generated locally, to the
* associated CPU. The base address of the CPU interface is usually
* aliased so that the same address points to different chips depending
* on the CPU it is accessed from.
*
* Note that IRQs 0-31 are special - they are local to each CPU.
* As such, the enable set/clear, pending set/clear and active bit
* registers are banked per-cpu for these sources.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/smp.h>
#include <linux/cpu_pm.h>
#include <linux/cpumask.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/irqdomain.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/slab.h>
#include <linux/syscore_ops.h>
#include <asm/irq.h>
#include <asm/exception.h>
#include <asm/smp_plat.h>
#include <asm/mach/irq.h>
#include <asm/hardware/gic.h>
#include <asm/system.h>
#include <mach/socinfo.h>
union gic_base {
void __iomem *common_base;
void __percpu __iomem **percpu_base;
};
struct gic_chip_data {
unsigned int irq_offset;
union gic_base dist_base;
union gic_base cpu_base;
bool need_access_lock;
#ifdef CONFIG_CPU_PM
u32 saved_spi_enable[DIV_ROUND_UP(1020, 32)];
u32 saved_spi_conf[DIV_ROUND_UP(1020, 16)];
u32 saved_spi_target[DIV_ROUND_UP(1020, 4)];
u32 saved_dist_pri[DIV_ROUND_UP(1020, 4)];
u32 __percpu *saved_ppi_enable;
u32 __percpu *saved_ppi_conf;
#endif
u32 saved_dist_isr[DIV_ROUND_UP(1020, 32)];
struct irq_domain *domain;
unsigned int gic_irqs;
#ifdef CONFIG_GIC_NON_BANKED
void __iomem *(*get_base)(union gic_base *);
#endif
unsigned int max_irq;
#ifdef CONFIG_PM
unsigned int wakeup_irqs[32];
unsigned int enabled_irqs[32];
#endif
};
static DEFINE_RAW_SPINLOCK(irq_controller_lock);
#ifdef CONFIG_CPU_PM
static unsigned int saved_dist_ctrl, saved_cpu_ctrl;
#endif
/*
* Supported arch specific GIC irq extension.
* Default make them NULL.
*/
struct irq_chip gic_arch_extn = {
.irq_eoi = NULL,
.irq_mask = NULL,
.irq_unmask = NULL,
.irq_retrigger = NULL,
.irq_set_type = NULL,
.irq_set_wake = NULL,
.irq_disable = NULL,
};
#ifndef MAX_GIC_NR
#define MAX_GIC_NR 1
#endif
static struct gic_chip_data gic_data[MAX_GIC_NR] __read_mostly;
#ifdef CONFIG_GIC_NON_BANKED
static void __iomem *gic_get_percpu_base(union gic_base *base)
{
return *__this_cpu_ptr(base->percpu_base);
}
static void __iomem *gic_get_common_base(union gic_base *base)
{
return base->common_base;
}
static inline void __iomem *gic_data_dist_base(struct gic_chip_data *data)
{
return data->get_base(&data->dist_base);
}
static inline void __iomem *gic_data_cpu_base(struct gic_chip_data *data)
{
return data->get_base(&data->cpu_base);
}
static inline void gic_set_base_accessor(struct gic_chip_data *data,
void __iomem *(*f)(union gic_base *))
{
data->get_base = f;
}
#else
#define gic_data_dist_base(d) ((d)->dist_base.common_base)
#define gic_data_cpu_base(d) ((d)->cpu_base.common_base)
#define gic_set_base_accessor(d,f)
#endif
static inline void __iomem *gic_dist_base(struct irq_data *d)
{
struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
return gic_data_dist_base(gic_data);
}
static inline void __iomem *gic_cpu_base(struct irq_data *d)
{
struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
return gic_data_cpu_base(gic_data);
}
static inline unsigned int gic_irq(struct irq_data *d)
{
return d->hwirq;
}
#if defined(CONFIG_CPU_V7) && defined(CONFIG_GIC_SECURE)
static const inline bool is_cpu_secure(void)
{
unsigned int dscr;
asm volatile ("mrc p14, 0, %0, c0, c1, 0" : "=r" (dscr));
/* BIT(18) - NS bit; 1 = NS; 0 = S */
if (BIT(18) & dscr)
return false;
else
return true;
}
#else
static const inline bool is_cpu_secure(void)
{
return false;
}
#endif
/*
* Routines to acknowledge, disable and enable interrupts
*/
static void gic_mask_irq(struct irq_data *d)
{
u32 mask = 1 << (gic_irq(d) % 32);
raw_spin_lock(&irq_controller_lock);
writel_relaxed(mask, gic_dist_base(d) + GIC_DIST_ENABLE_CLEAR + (gic_irq(d) / 32) * 4);
if (gic_arch_extn.irq_mask)
gic_arch_extn.irq_mask(d);
raw_spin_unlock(&irq_controller_lock);
}
static void gic_unmask_irq(struct irq_data *d)
{
u32 mask = 1 << (gic_irq(d) % 32);
raw_spin_lock(&irq_controller_lock);
if (gic_arch_extn.irq_unmask)
gic_arch_extn.irq_unmask(d);
writel_relaxed(mask, gic_dist_base(d) + GIC_DIST_ENABLE_SET + (gic_irq(d) / 32) * 4);
raw_spin_unlock(&irq_controller_lock);
}
static void gic_disable_irq(struct irq_data *d)
{
if (gic_arch_extn.irq_disable)
gic_arch_extn.irq_disable(d);
}
#ifdef CONFIG_PM
static int gic_suspend_one(struct gic_chip_data *gic)
{
unsigned int i;
void __iomem *base = gic_data_dist_base(gic);
for (i = 0; i * 32 < gic->max_irq; i++) {
gic->enabled_irqs[i]
= readl_relaxed(base + GIC_DIST_ENABLE_SET + i * 4);
/* disable all of them */
writel_relaxed(0xffffffff, base + GIC_DIST_ENABLE_CLEAR + i * 4);
/* enable the wakeup set */
writel_relaxed(gic->wakeup_irqs[i],
base + GIC_DIST_ENABLE_SET + i * 4);
}
mb();
return 0;
}
static int gic_suspend(void)
{
int i;
for (i = 0; i < MAX_GIC_NR; i++)
gic_suspend_one(&gic_data[i]);
return 0;
}
extern int msm_show_resume_irq_mask;
static void gic_show_resume_irq(struct gic_chip_data *gic)
{
unsigned int i;
u32 enabled;
unsigned long pending[32];
void __iomem *base = gic_data_dist_base(gic);
if (!msm_show_resume_irq_mask)
return;
raw_spin_lock(&irq_controller_lock);
for (i = 0; i * 32 < gic->max_irq; i++) {
enabled = readl_relaxed(base + GIC_DIST_ENABLE_CLEAR + i * 4);
pending[i] = readl_relaxed(base + GIC_DIST_PENDING_SET + i * 4);
pending[i] &= enabled;
}
raw_spin_unlock(&irq_controller_lock);
for (i = find_first_bit(pending, gic->max_irq);
i < gic->max_irq;
i = find_next_bit(pending, gic->max_irq, i+1)) {
pr_warning("%s: %d triggered", __func__,
i + gic->irq_offset);
}
}
static void gic_resume_one(struct gic_chip_data *gic)
{
unsigned int i;
void __iomem *base = gic_data_dist_base(gic);
gic_show_resume_irq(gic);
for (i = 0; i * 32 < gic->max_irq; i++) {
/* disable all of them */
writel_relaxed(0xffffffff, base + GIC_DIST_ENABLE_CLEAR + i * 4);
/* enable the enabled set */
writel_relaxed(gic->enabled_irqs[i],
base + GIC_DIST_ENABLE_SET + i * 4);
}
mb();
}
static void gic_resume(void)
{
int i;
for (i = 0; i < MAX_GIC_NR; i++)
gic_resume_one(&gic_data[i]);
}
static struct syscore_ops gic_syscore_ops = {
.suspend = gic_suspend,
.resume = gic_resume,
};
static int __init gic_init_sys(void)
{
register_syscore_ops(&gic_syscore_ops);
return 0;
}
arch_initcall(gic_init_sys);
#endif
static void gic_eoi_irq(struct irq_data *d)
{
struct gic_chip_data *gic = irq_data_get_irq_chip_data(d);
if (gic_arch_extn.irq_eoi) {
raw_spin_lock(&irq_controller_lock);
gic_arch_extn.irq_eoi(d);
raw_spin_unlock(&irq_controller_lock);
}
if (gic->need_access_lock)
raw_spin_lock(&irq_controller_lock);
writel_relaxed(gic_irq(d), gic_cpu_base(d) + GIC_CPU_EOI);
if (gic->need_access_lock)
raw_spin_unlock(&irq_controller_lock);
}
static int gic_set_type(struct irq_data *d, unsigned int type)
{
void __iomem *base = gic_dist_base(d);
unsigned int gicirq = gic_irq(d);
u32 enablemask = 1 << (gicirq % 32);
u32 enableoff = (gicirq / 32) * 4;
u32 confmask = 0x2 << ((gicirq % 16) * 2);
u32 confoff = (gicirq / 16) * 4;
bool enabled = false;
u32 val;
/* Interrupt configuration for SGIs can't be changed */
if (gicirq < 16)
return -EINVAL;
if (type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
return -EINVAL;
raw_spin_lock(&irq_controller_lock);
if (gic_arch_extn.irq_set_type)
gic_arch_extn.irq_set_type(d, type);
val = readl_relaxed(base + GIC_DIST_CONFIG + confoff);
if (type == IRQ_TYPE_LEVEL_HIGH)
val &= ~confmask;
else if (type == IRQ_TYPE_EDGE_RISING)
val |= confmask;
/*
* As recommended by the spec, disable the interrupt before changing
* the configuration
*/
if (readl_relaxed(base + GIC_DIST_ENABLE_SET + enableoff) & enablemask) {
writel_relaxed(enablemask, base + GIC_DIST_ENABLE_CLEAR + enableoff);
enabled = true;
}
writel_relaxed(val, base + GIC_DIST_CONFIG + confoff);
if (enabled)
writel_relaxed(enablemask, base + GIC_DIST_ENABLE_SET + enableoff);
raw_spin_unlock(&irq_controller_lock);
return 0;
}
static int gic_retrigger(struct irq_data *d)
{
if (gic_arch_extn.irq_retrigger)
return gic_arch_extn.irq_retrigger(d);
/* the genirq layer expects 0 for a failure */
return 0;
}
#ifdef CONFIG_SMP
static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
bool force)
{
void __iomem *reg = gic_dist_base(d) + GIC_DIST_TARGET + (gic_irq(d) & ~3);
unsigned int shift = (gic_irq(d) % 4) * 8;
unsigned int cpu = cpumask_any_and(mask_val, cpu_online_mask);
u32 val, mask, bit;
if (cpu >= 8 || cpu >= nr_cpu_ids)
return -EINVAL;
mask = 0xff << shift;
bit = 1 << (cpu_logical_map(cpu) + shift);
raw_spin_lock(&irq_controller_lock);
val = readl_relaxed(reg) & ~mask;
writel_relaxed(val | bit, reg);
raw_spin_unlock(&irq_controller_lock);
return IRQ_SET_MASK_OK;
}
#endif
#ifdef CONFIG_PM
static int gic_set_wake(struct irq_data *d, unsigned int on)
{
int ret = -ENXIO;
unsigned int reg_offset, bit_offset;
unsigned int gicirq = gic_irq(d);
struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
/* per-cpu interrupts cannot be wakeup interrupts */
WARN_ON(gicirq < 32);
reg_offset = gicirq / 32;
bit_offset = gicirq % 32;
if (on)
gic_data->wakeup_irqs[reg_offset] |= 1 << bit_offset;
else
gic_data->wakeup_irqs[reg_offset] &= ~(1 << bit_offset);
if (gic_arch_extn.irq_set_wake)
ret = gic_arch_extn.irq_set_wake(d, on);
return ret;
}
#else
#define gic_set_wake NULL
#endif
asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
{
u32 irqstat, irqnr;
struct gic_chip_data *gic = &gic_data[0];
void __iomem *cpu_base = gic_data_cpu_base(gic);
do {
if (gic->need_access_lock)
raw_spin_lock(&irq_controller_lock);
irqstat = readl_relaxed(cpu_base + GIC_CPU_INTACK);
if (gic->need_access_lock)
raw_spin_unlock(&irq_controller_lock);
irqnr = irqstat & ~0x1c00;
if (likely(irqnr > 15 && irqnr < 1021)) {
irqnr = irq_find_mapping(gic->domain, irqnr);
handle_IRQ(irqnr, regs);
continue;
}
if (irqnr < 16) {
if (gic->need_access_lock)
raw_spin_lock(&irq_controller_lock);
writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI);
if (gic->need_access_lock)
raw_spin_unlock(&irq_controller_lock);
#ifdef CONFIG_SMP
handle_IPI(irqnr, regs);
#endif
continue;
}
break;
} while (1);
}
static void gic_handle_cascade_irq(unsigned int irq, struct irq_desc *desc)
{
struct gic_chip_data *chip_data = irq_get_handler_data(irq);
struct irq_chip *chip = irq_get_chip(irq);
unsigned int cascade_irq, gic_irq;
unsigned long status;
chained_irq_enter(chip, desc);
raw_spin_lock(&irq_controller_lock);
status = readl_relaxed(gic_data_cpu_base(chip_data) + GIC_CPU_INTACK);
raw_spin_unlock(&irq_controller_lock);
gic_irq = (status & 0x3ff);
if (gic_irq == 1023)
goto out;
cascade_irq = irq_find_mapping(chip_data->domain, gic_irq);
if (unlikely(gic_irq < 32 || gic_irq > 1020))
do_bad_IRQ(cascade_irq, desc);
else
generic_handle_irq(cascade_irq);
out:
chained_irq_exit(chip, desc);
}
static struct irq_chip gic_chip = {
.name = "GIC",
.irq_mask = gic_mask_irq,
.irq_unmask = gic_unmask_irq,
.irq_eoi = gic_eoi_irq,
.irq_set_type = gic_set_type,
.irq_retrigger = gic_retrigger,
#ifdef CONFIG_SMP
.irq_set_affinity = gic_set_affinity,
#endif
.irq_disable = gic_disable_irq,
.irq_set_wake = gic_set_wake,
};
void __init gic_cascade_irq(unsigned int gic_nr, unsigned int irq)
{
if (gic_nr >= MAX_GIC_NR)
BUG();
if (irq_set_handler_data(irq, &gic_data[gic_nr]) != 0)
BUG();
irq_set_chained_handler(irq, gic_handle_cascade_irq);
}
static void __init gic_dist_init(struct gic_chip_data *gic)
{
unsigned int i;
u32 cpumask;
unsigned int gic_irqs = gic->gic_irqs;
void __iomem *base = gic_data_dist_base(gic);
u32 cpu = cpu_logical_map(smp_processor_id());
cpumask = 1 << cpu;
cpumask |= cpumask << 8;
cpumask |= cpumask << 16;
writel_relaxed(0, base + GIC_DIST_CTRL);
/*
* Set all global interrupts to be level triggered, active low.
*/
for (i = 32; i < gic_irqs; i += 16)
writel_relaxed(0, base + GIC_DIST_CONFIG + i * 4 / 16);
/*
* Set all global interrupts to this CPU only.
*/
for (i = 32; i < gic_irqs; i += 4)
writel_relaxed(cpumask, base + GIC_DIST_TARGET + i * 4 / 4);
/*
* Set NS/S.
*/
if (is_cpu_secure())
for (i = 32; i < gic_irqs; i += 32)
writel_relaxed(0xFFFFFFFF,
base + GIC_DIST_ISR + i * 4 / 32);
/*
* Set priority on all global interrupts.
*/
for (i = 32; i < gic_irqs; i += 4)
writel_relaxed(0xa0a0a0a0, base + GIC_DIST_PRI + i * 4 / 4);
/*
* Disable all interrupts. Leave the PPI and SGIs alone
* as these enables are banked registers.
*/
for (i = 32; i < gic_irqs; i += 32)
writel_relaxed(0xffffffff, base + GIC_DIST_ENABLE_CLEAR + i * 4 / 32);
gic->max_irq = gic_irqs;
if (is_cpu_secure())
writel_relaxed(3, base + GIC_DIST_CTRL);
else
writel_relaxed(1, base + GIC_DIST_CTRL);
mb();
}
static void __cpuinit gic_cpu_init(struct gic_chip_data *gic)
{
void __iomem *dist_base = gic_data_dist_base(gic);
void __iomem *base = gic_data_cpu_base(gic);
int i;
/*
* Deal with the banked PPI and SGI interrupts - disable all
* PPI interrupts, ensure all SGI interrupts are enabled.
*/
if (gic->need_access_lock)
raw_spin_lock(&irq_controller_lock);
writel_relaxed(0xffff0000, dist_base + GIC_DIST_ENABLE_CLEAR);
writel_relaxed(0x0000ffff, dist_base + GIC_DIST_ENABLE_SET);
/* Set NS/S */
if (is_cpu_secure())
writel_relaxed(0xFFFFFFFF, dist_base + GIC_DIST_ISR);
/*
* Set priority on PPI and SGI interrupts
*/
for (i = 0; i < 32; i += 4)
writel_relaxed(0xa0a0a0a0, dist_base + GIC_DIST_PRI + i * 4 / 4);
writel_relaxed(0xf0, base + GIC_CPU_PRIMASK);
if (is_cpu_secure())
writel_relaxed(0xF, base + GIC_CPU_CTRL);
else
writel_relaxed(1, base + GIC_CPU_CTRL);
if (gic->need_access_lock)
raw_spin_unlock(&irq_controller_lock);
mb();
}
#ifdef CONFIG_CPU_PM
/*
* Saves the GIC distributor registers during suspend or idle. Must be called
* with interrupts disabled but before powering down the GIC. After calling
* this function, no interrupts will be delivered by the GIC, and another
* platform-specific wakeup source must be enabled.
*/
static void gic_dist_save(unsigned int gic_nr)
{
unsigned int gic_irqs;
void __iomem *dist_base;
int i;
if (gic_nr >= MAX_GIC_NR)
BUG();
gic_irqs = gic_data[gic_nr].gic_irqs;
dist_base = gic_data_dist_base(&gic_data[gic_nr]);
if (!dist_base)
return;
saved_dist_ctrl = readl_relaxed(dist_base + GIC_DIST_CTRL);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
gic_data[gic_nr].saved_spi_conf[i] =
readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
gic_data[gic_nr].saved_spi_target[i] =
readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
gic_data[gic_nr].saved_dist_pri[i] =
readl_relaxed(dist_base + GIC_DIST_PRI + i * 4);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
gic_data[gic_nr].saved_spi_enable[i] =
readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
if (is_cpu_secure()) {
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
gic_data[gic_nr].saved_dist_isr[i] =
readl_relaxed(dist_base + GIC_DIST_ISR + i * 4);
}
}
/*
* Restores the GIC distributor registers during resume or when coming out of
* idle. Must be called before enabling interrupts. If a level interrupt
* that occured while the GIC was suspended is still present, it will be
* handled normally, but any edge interrupts that occured will not be seen by
* the GIC and need to be handled by the platform-specific wakeup source.
*/
static void gic_dist_restore(unsigned int gic_nr)
{
unsigned int gic_irqs;
unsigned int i;
void __iomem *dist_base;
if (gic_nr >= MAX_GIC_NR)
BUG();
gic_irqs = gic_data[gic_nr].gic_irqs;
dist_base = gic_data_dist_base(&gic_data[gic_nr]);
if (!dist_base)
return;
writel_relaxed(0, dist_base + GIC_DIST_CTRL);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
writel_relaxed(gic_data[gic_nr].saved_spi_conf[i],
dist_base + GIC_DIST_CONFIG + i * 4);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
writel_relaxed(gic_data[gic_nr].saved_dist_pri[i],
dist_base + GIC_DIST_PRI + i * 4);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
writel_relaxed(gic_data[gic_nr].saved_spi_target[i],
dist_base + GIC_DIST_TARGET + i * 4);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
writel_relaxed(gic_data[gic_nr].saved_spi_enable[i],
dist_base + GIC_DIST_ENABLE_SET + i * 4);
if (is_cpu_secure()) {
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
writel_relaxed(gic_data[gic_nr].saved_dist_isr[i],
dist_base + GIC_DIST_ISR + i * 4);
}
writel_relaxed(saved_dist_ctrl, dist_base + GIC_DIST_CTRL);
}
static void gic_cpu_save(unsigned int gic_nr)
{
int i;
u32 *ptr;
void __iomem *dist_base;
void __iomem *cpu_base;
if (gic_nr >= MAX_GIC_NR)
BUG();
dist_base = gic_data_dist_base(&gic_data[gic_nr]);
cpu_base = gic_data_cpu_base(&gic_data[gic_nr]);
if (!dist_base || !cpu_base)
return;
saved_cpu_ctrl = readl_relaxed(cpu_base + GIC_CPU_CTRL);
for (i = 0; i < DIV_ROUND_UP(32, 4); i++)
gic_data[gic_nr].saved_dist_pri[i] = readl_relaxed(dist_base +
GIC_DIST_PRI + i * 4);
ptr = __this_cpu_ptr(gic_data[gic_nr].saved_ppi_enable);
for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
ptr[i] = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
ptr = __this_cpu_ptr(gic_data[gic_nr].saved_ppi_conf);
for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
ptr[i] = readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
}
static void gic_cpu_restore(unsigned int gic_nr)
{
int i;
u32 *ptr;
void __iomem *dist_base;
void __iomem *cpu_base;
if (gic_nr >= MAX_GIC_NR)
BUG();
dist_base = gic_data_dist_base(&gic_data[gic_nr]);
cpu_base = gic_data_cpu_base(&gic_data[gic_nr]);
if (!dist_base || !cpu_base)
return;
ptr = __this_cpu_ptr(gic_data[gic_nr].saved_ppi_enable);
for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
writel_relaxed(ptr[i], dist_base + GIC_DIST_ENABLE_SET + i * 4);
ptr = __this_cpu_ptr(gic_data[gic_nr].saved_ppi_conf);
for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
writel_relaxed(ptr[i], dist_base + GIC_DIST_CONFIG + i * 4);
for (i = 0; i < DIV_ROUND_UP(32, 4); i++)
writel_relaxed(gic_data[gic_nr].saved_dist_pri[i],
dist_base + GIC_DIST_PRI + i * 4);
writel_relaxed(0xf0, cpu_base + GIC_CPU_PRIMASK);
writel_relaxed(saved_cpu_ctrl, cpu_base + GIC_CPU_CTRL);
}
static int gic_notifier(struct notifier_block *self, unsigned long cmd, void *v)
{
int i;
for (i = 0; i < MAX_GIC_NR; i++) {
#ifdef CONFIG_GIC_NON_BANKED
/* Skip over unused GICs */
if (!gic_data[i].get_base)
continue;
#endif
switch (cmd) {
case CPU_PM_ENTER:
gic_cpu_save(i);
break;
case CPU_PM_ENTER_FAILED:
case CPU_PM_EXIT:
gic_cpu_restore(i);
break;
case CPU_CLUSTER_PM_ENTER:
gic_dist_save(i);
break;
case CPU_CLUSTER_PM_ENTER_FAILED:
case CPU_CLUSTER_PM_EXIT:
gic_dist_restore(i);
break;
}
}
return NOTIFY_OK;
}
static struct notifier_block gic_notifier_block = {
.notifier_call = gic_notifier,
};
static void __init gic_pm_init(struct gic_chip_data *gic)
{
gic->saved_ppi_enable = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
sizeof(u32));
BUG_ON(!gic->saved_ppi_enable);
gic->saved_ppi_conf = __alloc_percpu(DIV_ROUND_UP(32, 16) * 4,
sizeof(u32));
BUG_ON(!gic->saved_ppi_conf);
if (gic == &gic_data[0])
cpu_pm_register_notifier(&gic_notifier_block);
}
#else
static void __init gic_pm_init(struct gic_chip_data *gic)
{
}
static void gic_cpu_restore(unsigned int gic_nr)
{
}
static void gic_cpu_save(unsigned int gic_nr)
{
}
static void gic_dist_restore(unsigned int gic_nr)
{
}
static void gic_dist_save(unsigned int gic_nr)
{
}
#endif
static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
irq_hw_number_t hw)
{
if (hw < 32) {
irq_set_percpu_devid(irq);
irq_set_chip_and_handler(irq, &gic_chip,
handle_percpu_devid_irq);
set_irq_flags(irq, IRQF_VALID | IRQF_NOAUTOEN);
} else {
irq_set_chip_and_handler(irq, &gic_chip,
handle_fasteoi_irq);
set_irq_flags(irq, IRQF_VALID | IRQF_PROBE);
}
irq_set_chip_data(irq, d->host_data);
return 0;
}
static int gic_irq_domain_xlate(struct irq_domain *d,
struct device_node *controller,
const u32 *intspec, unsigned int intsize,
unsigned long *out_hwirq, unsigned int *out_type)
{
if (d->of_node != controller)
return -EINVAL;
if (intsize < 3)
return -EINVAL;
/* Get the interrupt number and add 16 to skip over SGIs */
*out_hwirq = intspec[1] + 16;
/* For SPIs, we need to add 16 more to get the GIC irq ID number */
if (!intspec[0])
*out_hwirq += 16;
*out_type = intspec[2] & IRQ_TYPE_SENSE_MASK;
return 0;
}
const struct irq_domain_ops gic_irq_domain_ops = {
.map = gic_irq_domain_map,
.xlate = gic_irq_domain_xlate,
};
void __init gic_init_bases(unsigned int gic_nr, int irq_start,
void __iomem *dist_base, void __iomem *cpu_base,
u32 percpu_offset, struct device_node *node)
{
irq_hw_number_t hwirq_base;
struct gic_chip_data *gic;
int gic_irqs, irq_base;
BUG_ON(gic_nr >= MAX_GIC_NR);
gic = &gic_data[gic_nr];
if (cpu_is_msm8625() &&
(SOCINFO_VERSION_MAJOR(socinfo_get_version()) <= 1))
gic->need_access_lock = true;
#ifdef CONFIG_GIC_NON_BANKED
if (percpu_offset) { /* Frankein-GIC without banked registers... */
unsigned int cpu;
gic->dist_base.percpu_base = alloc_percpu(void __iomem *);
gic->cpu_base.percpu_base = alloc_percpu(void __iomem *);
if (WARN_ON(!gic->dist_base.percpu_base ||
!gic->cpu_base.percpu_base)) {
free_percpu(gic->dist_base.percpu_base);
free_percpu(gic->cpu_base.percpu_base);
return;
}
for_each_possible_cpu(cpu) {
unsigned long offset = percpu_offset * cpu_logical_map(cpu);
*per_cpu_ptr(gic->dist_base.percpu_base, cpu) = dist_base + offset;
*per_cpu_ptr(gic->cpu_base.percpu_base, cpu) = cpu_base + offset;
}
gic_set_base_accessor(gic, gic_get_percpu_base);
} else
#endif
{ /* Normal, sane GIC... */
WARN(percpu_offset,
"GIC_NON_BANKED not enabled, ignoring %08x offset!",
percpu_offset);
gic->dist_base.common_base = dist_base;
gic->cpu_base.common_base = cpu_base;
gic_set_base_accessor(gic, gic_get_common_base);
}
/*
* For primary GICs, skip over SGIs.
* For secondary GICs, skip over PPIs, too.
*/
if (gic_nr == 0 && (irq_start & 31) > 0) {
hwirq_base = 16;
if (irq_start != -1)
irq_start = (irq_start & ~31) + 16;
} else {
hwirq_base = 32;
}
/*
* Find out how many interrupts are supported.
* The GIC only supports up to 1020 interrupt sources.
*/
gic_irqs = readl_relaxed(gic_data_dist_base(gic) + GIC_DIST_CTR) & 0x1f;
gic_irqs = (gic_irqs + 1) * 32;
if (gic_irqs > 1020)
gic_irqs = 1020;
gic->gic_irqs = gic_irqs;
gic_irqs -= hwirq_base; /* calculate # of irqs to allocate */
irq_base = irq_alloc_descs(irq_start, 16, gic_irqs, numa_node_id());
if (IS_ERR_VALUE(irq_base)) {
WARN(1, "Cannot allocate irq_descs @ IRQ%d, assuming pre-allocated\n",
irq_start);
irq_base = irq_start;
}
gic->domain = irq_domain_add_legacy(node, gic_irqs, irq_base,
hwirq_base, &gic_irq_domain_ops, gic);
if (WARN_ON(!gic->domain))
return;
gic_chip.flags |= gic_arch_extn.flags;
gic_dist_init(gic);
gic_cpu_init(gic);
gic_pm_init(gic);
}
void __cpuinit gic_secondary_init(unsigned int gic_nr)
{
BUG_ON(gic_nr >= MAX_GIC_NR);
gic_cpu_init(&gic_data[gic_nr]);
}
#ifdef CONFIG_SMP
void gic_raise_softirq(const struct cpumask *mask, unsigned int irq)
{
int cpu;
unsigned long sgir;
unsigned long map = 0;
unsigned long flags = 0;
struct gic_chip_data *gic = &gic_data[0];
/* Convert our logical CPU mask into a physical one. */
for_each_cpu(cpu, mask)
map |= 1 << cpu_logical_map(cpu);
sgir = (map << 16) | irq;
if (is_cpu_secure())
sgir |= (1 << 15);
/*
* Ensure that stores to Normal memory are visible to the
* other CPUs before issuing the IPI.
*/
dsb();
if (gic->need_access_lock)
raw_spin_lock_irqsave(&irq_controller_lock, flags);
/* this always happens on GIC0 */
writel_relaxed(sgir, gic_data_dist_base(gic) + GIC_DIST_SOFTINT);
if (gic->need_access_lock)
raw_spin_unlock_irqrestore(&irq_controller_lock, flags);
mb();
}
#endif
void gic_set_irq_secure(unsigned int irq)
{
unsigned int gicd_isr_reg, gicd_pri_reg;
unsigned int mask = 0xFFFFFF00;
struct gic_chip_data *gic_data = &gic_data[0];
struct irq_data *d = irq_get_irq_data(irq);
if (is_cpu_secure()) {
raw_spin_lock(&irq_controller_lock);
gicd_isr_reg = readl_relaxed(gic_dist_base(d) +
GIC_DIST_ISR + gic_irq(d) / 32 * 4);
gicd_isr_reg &= ~BIT(gic_irq(d) % 32);
writel_relaxed(gicd_isr_reg, gic_dist_base(d) +
GIC_DIST_ISR + gic_irq(d) / 32 * 4);
/* Also increase the priority of that irq */
gicd_pri_reg = readl_relaxed(gic_dist_base(d) +
GIC_DIST_PRI + (gic_irq(d) * 4 / 4));
gicd_pri_reg &= mask;
gicd_pri_reg |= 0x80; /* Priority of 0x80 > 0xA0 */
writel_relaxed(gicd_pri_reg, gic_dist_base(d) + GIC_DIST_PRI +
gic_irq(d) * 4 / 4);
mb();
raw_spin_unlock(&irq_controller_lock);
} else {
WARN(1, "Trying to run secure operation from Non-secure mode");
}
}
#ifdef CONFIG_OF
static int gic_cnt __initdata = 0;
int __init gic_of_init(struct device_node *node, struct device_node *parent)
{
void __iomem *cpu_base;
void __iomem *dist_base;
u32 percpu_offset;
int irq;
if (WARN_ON(!node))
return -ENODEV;
dist_base = of_iomap(node, 0);
WARN(!dist_base, "unable to map gic dist registers\n");
cpu_base = of_iomap(node, 1);
WARN(!cpu_base, "unable to map gic cpu registers\n");
if (of_property_read_u32(node, "cpu-offset", &percpu_offset))
percpu_offset = 0;
gic_init_bases(gic_cnt, -1, dist_base, cpu_base, percpu_offset, node);
if (parent) {
irq = irq_of_parse_and_map(node, 0);
gic_cascade_irq(gic_cnt, irq);
}
gic_cnt++;
return 0;
}
#endif
/*
* Before calling this function the interrupts should be disabled
* and the irq must be disabled at gic to avoid spurious interrupts
*/
bool gic_is_irq_pending(unsigned int irq)
{
struct irq_data *d = irq_get_irq_data(irq);
struct gic_chip_data *gic_data = &gic_data[0];
u32 mask, val;
WARN_ON(!irqs_disabled());
raw_spin_lock(&irq_controller_lock);
mask = 1 << (gic_irq(d) % 32);
val = readl(gic_dist_base(d) +
GIC_DIST_ENABLE_SET + (gic_irq(d) / 32) * 4);
/* warn if the interrupt is enabled */
WARN_ON(val & mask);
val = readl(gic_dist_base(d) +
GIC_DIST_PENDING_SET + (gic_irq(d) / 32) * 4);
raw_spin_unlock(&irq_controller_lock);
return (bool) (val & mask);
}
/*
* Before calling this function the interrupts should be disabled
* and the irq must be disabled at gic to avoid spurious interrupts
*/
void gic_clear_irq_pending(unsigned int irq)
{
struct gic_chip_data *gic_data = &gic_data[0];
struct irq_data *d = irq_get_irq_data(irq);
u32 mask, val;
WARN_ON(!irqs_disabled());
raw_spin_lock(&irq_controller_lock);
mask = 1 << (gic_irq(d) % 32);
val = readl(gic_dist_base(d) +
GIC_DIST_ENABLE_SET + (gic_irq(d) / 32) * 4);
/* warn if the interrupt is enabled */
WARN_ON(val & mask);
writel(mask, gic_dist_base(d) +
GIC_DIST_PENDING_CLEAR + (gic_irq(d) / 32) * 4);
raw_spin_unlock(&irq_controller_lock);
}
#ifdef CONFIG_ARCH_MSM8625
/*
* Check for any interrupts which are enabled are pending
* in the pending set or not.
* Return :
* 0 : No pending interrupts
* 1 : Pending interrupts other than A9_M2A_5
*/
unsigned int msm_gic_spi_ppi_pending(void)
{
unsigned int i, bit = 0;
unsigned int pending_enb = 0, pending = 0;
unsigned long value = 0;
struct gic_chip_data *gic = &gic_data[0];
void __iomem *base = gic_data_dist_base(gic);
unsigned long flags;
raw_spin_lock_irqsave(&irq_controller_lock, flags);
/*
* PPI and SGI to be included.
* MSM8625_INT_A9_M2A_5 needs to be ignored, as A9_M2A_5
* requesting sleep triggers it
*/
for (i = 0; (i * 32) < gic->max_irq; i++) {
pending = readl_relaxed(base +
GIC_DIST_PENDING_SET + i * 4);
pending_enb = readl_relaxed(base +
GIC_DIST_ENABLE_SET + i * 4);
value = pending & pending_enb;
if (value) {
for (bit = 0; bit < 32; bit++) {
bit = find_next_bit(&value, 32, bit);
if ((bit + 32 * i) != MSM8625_INT_A9_M2A_5) {
raw_spin_unlock_irqrestore(
&irq_controller_lock, flags);
return 1;
}
}
}
}
raw_spin_unlock_irqrestore(&irq_controller_lock, flags);
return 0;
}
#endif
void msm_gic_save(void)
{
unsigned int i;
struct gic_chip_data *gic = &gic_data[0];
void __iomem *base = gic_data_dist_base(gic);
gic_cpu_save(0);
gic_dist_save(0);
/* Disable all the Interrupts, before we enter pc */
for (i = 0; (i * 32) < gic->max_irq; i++) {
raw_spin_lock(&irq_controller_lock);
writel_relaxed(0xffffffff, base
+ GIC_DIST_ENABLE_CLEAR + i * 4);
raw_spin_unlock(&irq_controller_lock);
}
}
void msm_gic_restore(void)
{
gic_dist_restore(0);
gic_cpu_restore(0);
}
/*
* Configure the GIC after we come out of power collapse.
* This function will configure some of the GIC registers so as to prepare the
* secondary cores to receive an SPI(ACSR_MP_CORE_IPC1/IPC2/IPC3, 40/92/93),
* which will bring cores out of GDFS.
*/
void gic_configure_and_raise(unsigned int irq, unsigned int cpu)
{
struct gic_chip_data *gic = &gic_data[0];
struct irq_data *d = irq_get_irq_data(irq);
void __iomem *base = gic_data_dist_base(gic);
unsigned int value = 0, byte_offset, offset, bit;
unsigned long flags;
offset = ((gic_irq(d) / 32) * 4);
bit = BIT(gic_irq(d) % 32);
raw_spin_lock_irqsave(&irq_controller_lock, flags);
value = __raw_readl(base + GIC_DIST_ACTIVE_BIT + offset);
__raw_writel(value | bit, base + GIC_DIST_ACTIVE_BIT + offset);
mb();
value = __raw_readl(base + GIC_DIST_TARGET + (gic_irq(d) / 4) * 4);
byte_offset = (gic_irq(d) % 4) * 8;
value |= 1 << (cpu + byte_offset);
__raw_writel(value, base + GIC_DIST_TARGET + (gic_irq(d) / 4) * 4);
mb();
value = __raw_readl(base + GIC_DIST_ENABLE_SET + offset);
__raw_writel(value | bit, base + GIC_DIST_ENABLE_SET + offset);
mb();
raw_spin_unlock_irqrestore(&irq_controller_lock, flags);
}