308 lines
8.4 KiB
C
308 lines
8.4 KiB
C
|
/* sha.c
|
||
|
**
|
||
|
** Copyright 2008, The Android Open Source Project
|
||
|
**
|
||
|
** Redistribution and use in source and binary forms, with or without
|
||
|
** modification, are permitted provided that the following conditions are met:
|
||
|
** * Redistributions of source code must retain the above copyright
|
||
|
** notice, this list of conditions and the following disclaimer.
|
||
|
** * Redistributions in binary form must reproduce the above copyright
|
||
|
** notice, this list of conditions and the following disclaimer in the
|
||
|
** documentation and/or other materials provided with the distribution.
|
||
|
** * Neither the name of Google Inc. nor the names of its contributors may
|
||
|
** be used to endorse or promote products derived from this software
|
||
|
** without specific prior written permission.
|
||
|
**
|
||
|
** THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
|
||
|
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||
|
** MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
|
||
|
** EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
** PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||
|
** OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
||
|
** WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
||
|
** OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
||
|
** ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
#include "mincrypt/sha.h"
|
||
|
|
||
|
// Some machines lack byteswap.h and endian.h. These have to use the
|
||
|
// slower code, even if they're little-endian.
|
||
|
|
||
|
#if defined(HAVE_ENDIAN_H) && defined(HAVE_LITTLE_ENDIAN)
|
||
|
|
||
|
#include <byteswap.h>
|
||
|
#include <memory.h>
|
||
|
|
||
|
// This version is about 28% faster than the generic version below,
|
||
|
// but assumes little-endianness.
|
||
|
|
||
|
static inline uint32_t ror27(uint32_t val) {
|
||
|
return (val >> 27) | (val << 5);
|
||
|
}
|
||
|
static inline uint32_t ror2(uint32_t val) {
|
||
|
return (val >> 2) | (val << 30);
|
||
|
}
|
||
|
static inline uint32_t ror31(uint32_t val) {
|
||
|
return (val >> 31) | (val << 1);
|
||
|
}
|
||
|
|
||
|
static void SHA1_Transform(SHA_CTX* ctx) {
|
||
|
uint32_t W[80];
|
||
|
register uint32_t A, B, C, D, E;
|
||
|
int t;
|
||
|
|
||
|
A = ctx->state[0];
|
||
|
B = ctx->state[1];
|
||
|
C = ctx->state[2];
|
||
|
D = ctx->state[3];
|
||
|
E = ctx->state[4];
|
||
|
|
||
|
#define SHA_F1(A,B,C,D,E,t) \
|
||
|
E += ror27(A) + \
|
||
|
(W[t] = bswap_32(ctx->buf.w[t])) + \
|
||
|
(D^(B&(C^D))) + 0x5A827999; \
|
||
|
B = ror2(B);
|
||
|
|
||
|
for (t = 0; t < 15; t += 5) {
|
||
|
SHA_F1(A,B,C,D,E,t + 0);
|
||
|
SHA_F1(E,A,B,C,D,t + 1);
|
||
|
SHA_F1(D,E,A,B,C,t + 2);
|
||
|
SHA_F1(C,D,E,A,B,t + 3);
|
||
|
SHA_F1(B,C,D,E,A,t + 4);
|
||
|
}
|
||
|
SHA_F1(A,B,C,D,E,t + 0); // 16th one, t == 15
|
||
|
|
||
|
#undef SHA_F1
|
||
|
|
||
|
#define SHA_F1(A,B,C,D,E,t) \
|
||
|
E += ror27(A) + \
|
||
|
(W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \
|
||
|
(D^(B&(C^D))) + 0x5A827999; \
|
||
|
B = ror2(B);
|
||
|
|
||
|
SHA_F1(E,A,B,C,D,t + 1);
|
||
|
SHA_F1(D,E,A,B,C,t + 2);
|
||
|
SHA_F1(C,D,E,A,B,t + 3);
|
||
|
SHA_F1(B,C,D,E,A,t + 4);
|
||
|
|
||
|
#undef SHA_F1
|
||
|
|
||
|
#define SHA_F2(A,B,C,D,E,t) \
|
||
|
E += ror27(A) + \
|
||
|
(W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \
|
||
|
(B^C^D) + 0x6ED9EBA1; \
|
||
|
B = ror2(B);
|
||
|
|
||
|
for (t = 20; t < 40; t += 5) {
|
||
|
SHA_F2(A,B,C,D,E,t + 0);
|
||
|
SHA_F2(E,A,B,C,D,t + 1);
|
||
|
SHA_F2(D,E,A,B,C,t + 2);
|
||
|
SHA_F2(C,D,E,A,B,t + 3);
|
||
|
SHA_F2(B,C,D,E,A,t + 4);
|
||
|
}
|
||
|
|
||
|
#undef SHA_F2
|
||
|
|
||
|
#define SHA_F3(A,B,C,D,E,t) \
|
||
|
E += ror27(A) + \
|
||
|
(W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \
|
||
|
((B&C)|(D&(B|C))) + 0x8F1BBCDC; \
|
||
|
B = ror2(B);
|
||
|
|
||
|
for (; t < 60; t += 5) {
|
||
|
SHA_F3(A,B,C,D,E,t + 0);
|
||
|
SHA_F3(E,A,B,C,D,t + 1);
|
||
|
SHA_F3(D,E,A,B,C,t + 2);
|
||
|
SHA_F3(C,D,E,A,B,t + 3);
|
||
|
SHA_F3(B,C,D,E,A,t + 4);
|
||
|
}
|
||
|
|
||
|
#undef SHA_F3
|
||
|
|
||
|
#define SHA_F4(A,B,C,D,E,t) \
|
||
|
E += ror27(A) + \
|
||
|
(W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \
|
||
|
(B^C^D) + 0xCA62C1D6; \
|
||
|
B = ror2(B);
|
||
|
|
||
|
for (; t < 80; t += 5) {
|
||
|
SHA_F4(A,B,C,D,E,t + 0);
|
||
|
SHA_F4(E,A,B,C,D,t + 1);
|
||
|
SHA_F4(D,E,A,B,C,t + 2);
|
||
|
SHA_F4(C,D,E,A,B,t + 3);
|
||
|
SHA_F4(B,C,D,E,A,t + 4);
|
||
|
}
|
||
|
|
||
|
#undef SHA_F4
|
||
|
|
||
|
ctx->state[0] += A;
|
||
|
ctx->state[1] += B;
|
||
|
ctx->state[2] += C;
|
||
|
ctx->state[3] += D;
|
||
|
ctx->state[4] += E;
|
||
|
}
|
||
|
|
||
|
void SHA_update(SHA_CTX* ctx, const void* data, int len) {
|
||
|
int i = ctx->count % sizeof(ctx->buf);
|
||
|
const uint8_t* p = (const uint8_t*)data;
|
||
|
|
||
|
ctx->count += len;
|
||
|
|
||
|
while (len > sizeof(ctx->buf) - i) {
|
||
|
memcpy(&ctx->buf.b[i], p, sizeof(ctx->buf) - i);
|
||
|
len -= sizeof(ctx->buf) - i;
|
||
|
p += sizeof(ctx->buf) - i;
|
||
|
SHA1_Transform(ctx);
|
||
|
i = 0;
|
||
|
}
|
||
|
|
||
|
while (len--) {
|
||
|
ctx->buf.b[i++] = *p++;
|
||
|
if (i == sizeof(ctx->buf)) {
|
||
|
SHA1_Transform(ctx);
|
||
|
i = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
const uint8_t* SHA_final(SHA_CTX* ctx) {
|
||
|
uint64_t cnt = ctx->count * 8;
|
||
|
int i;
|
||
|
|
||
|
SHA_update(ctx, (uint8_t*)"\x80", 1);
|
||
|
while ((ctx->count % sizeof(ctx->buf)) != (sizeof(ctx->buf) - 8)) {
|
||
|
SHA_update(ctx, (uint8_t*)"\0", 1);
|
||
|
}
|
||
|
for (i = 0; i < 8; ++i) {
|
||
|
uint8_t tmp = cnt >> ((7 - i) * 8);
|
||
|
SHA_update(ctx, &tmp, 1);
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < 5; i++) {
|
||
|
ctx->buf.w[i] = bswap_32(ctx->state[i]);
|
||
|
}
|
||
|
|
||
|
return ctx->buf.b;
|
||
|
}
|
||
|
|
||
|
#else // #if defined(HAVE_ENDIAN_H) && defined(HAVE_LITTLE_ENDIAN)
|
||
|
|
||
|
#define rol(bits, value) (((value) << (bits)) | ((value) >> (32 - (bits))))
|
||
|
|
||
|
static void SHA1_transform(SHA_CTX *ctx) {
|
||
|
uint32_t W[80];
|
||
|
uint32_t A, B, C, D, E;
|
||
|
uint8_t *p = ctx->buf;
|
||
|
int t;
|
||
|
|
||
|
for(t = 0; t < 16; ++t) {
|
||
|
uint32_t tmp = *p++ << 24;
|
||
|
tmp |= *p++ << 16;
|
||
|
tmp |= *p++ << 8;
|
||
|
tmp |= *p++;
|
||
|
W[t] = tmp;
|
||
|
}
|
||
|
|
||
|
for(; t < 80; t++) {
|
||
|
W[t] = rol(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]);
|
||
|
}
|
||
|
|
||
|
A = ctx->state[0];
|
||
|
B = ctx->state[1];
|
||
|
C = ctx->state[2];
|
||
|
D = ctx->state[3];
|
||
|
E = ctx->state[4];
|
||
|
|
||
|
for(t = 0; t < 80; t++) {
|
||
|
uint32_t tmp = rol(5,A) + E + W[t];
|
||
|
|
||
|
if (t < 20)
|
||
|
tmp += (D^(B&(C^D))) + 0x5A827999;
|
||
|
else if ( t < 40)
|
||
|
tmp += (B^C^D) + 0x6ED9EBA1;
|
||
|
else if ( t < 60)
|
||
|
tmp += ((B&C)|(D&(B|C))) + 0x8F1BBCDC;
|
||
|
else
|
||
|
tmp += (B^C^D) + 0xCA62C1D6;
|
||
|
|
||
|
E = D;
|
||
|
D = C;
|
||
|
C = rol(30,B);
|
||
|
B = A;
|
||
|
A = tmp;
|
||
|
}
|
||
|
|
||
|
ctx->state[0] += A;
|
||
|
ctx->state[1] += B;
|
||
|
ctx->state[2] += C;
|
||
|
ctx->state[3] += D;
|
||
|
ctx->state[4] += E;
|
||
|
}
|
||
|
|
||
|
void SHA_update(SHA_CTX *ctx, const void *data, int len) {
|
||
|
int i = ctx->count % sizeof(ctx->buf);
|
||
|
const uint8_t* p = (const uint8_t*)data;
|
||
|
|
||
|
ctx->count += len;
|
||
|
|
||
|
while (len--) {
|
||
|
ctx->buf[i++] = *p++;
|
||
|
if (i == sizeof(ctx->buf)) {
|
||
|
SHA1_transform(ctx);
|
||
|
i = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
const uint8_t *SHA_final(SHA_CTX *ctx) {
|
||
|
uint8_t *p = ctx->buf;
|
||
|
uint64_t cnt = ctx->count * 8;
|
||
|
int i;
|
||
|
|
||
|
SHA_update(ctx, (uint8_t*)"\x80", 1);
|
||
|
while ((ctx->count % sizeof(ctx->buf)) != (sizeof(ctx->buf) - 8)) {
|
||
|
SHA_update(ctx, (uint8_t*)"\0", 1);
|
||
|
}
|
||
|
for (i = 0; i < 8; ++i) {
|
||
|
uint8_t tmp = cnt >> ((7 - i) * 8);
|
||
|
SHA_update(ctx, &tmp, 1);
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < 5; i++) {
|
||
|
uint32_t tmp = ctx->state[i];
|
||
|
*p++ = tmp >> 24;
|
||
|
*p++ = tmp >> 16;
|
||
|
*p++ = tmp >> 8;
|
||
|
*p++ = tmp >> 0;
|
||
|
}
|
||
|
|
||
|
return ctx->buf;
|
||
|
}
|
||
|
|
||
|
#endif // endianness
|
||
|
|
||
|
void SHA_init(SHA_CTX* ctx) {
|
||
|
ctx->state[0] = 0x67452301;
|
||
|
ctx->state[1] = 0xEFCDAB89;
|
||
|
ctx->state[2] = 0x98BADCFE;
|
||
|
ctx->state[3] = 0x10325476;
|
||
|
ctx->state[4] = 0xC3D2E1F0;
|
||
|
ctx->count = 0;
|
||
|
}
|
||
|
|
||
|
/* Convenience function */
|
||
|
const uint8_t* SHA(const void *data, int len, uint8_t *digest) {
|
||
|
const uint8_t *p;
|
||
|
int i;
|
||
|
SHA_CTX ctx;
|
||
|
SHA_init(&ctx);
|
||
|
SHA_update(&ctx, data, len);
|
||
|
p = SHA_final(&ctx);
|
||
|
for (i = 0; i < SHA_DIGEST_SIZE; ++i) {
|
||
|
digest[i] = *p++;
|
||
|
}
|
||
|
return digest;
|
||
|
}
|