M7350/kernel/fs/exec.c

1642 lines
38 KiB
C
Raw Permalink Normal View History

2024-09-09 08:52:07 +00:00
/*
* linux/fs/exec.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*/
/*
* #!-checking implemented by tytso.
*/
/*
* Demand-loading implemented 01.12.91 - no need to read anything but
* the header into memory. The inode of the executable is put into
* "current->executable", and page faults do the actual loading. Clean.
*
* Once more I can proudly say that linux stood up to being changed: it
* was less than 2 hours work to get demand-loading completely implemented.
*
* Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
* current->executable is only used by the procfs. This allows a dispatch
* table to check for several different types of binary formats. We keep
* trying until we recognize the file or we run out of supported binary
* formats.
*/
#include <linux/slab.h>
#include <linux/file.h>
#include <linux/fdtable.h>
#include <linux/mm.h>
2024-09-09 08:57:42 +00:00
#include <linux/vmacache.h>
2024-09-09 08:52:07 +00:00
#include <linux/stat.h>
#include <linux/fcntl.h>
#include <linux/swap.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/pagemap.h>
#include <linux/perf_event.h>
#include <linux/highmem.h>
#include <linux/spinlock.h>
#include <linux/key.h>
#include <linux/personality.h>
#include <linux/binfmts.h>
#include <linux/utsname.h>
#include <linux/pid_namespace.h>
#include <linux/module.h>
#include <linux/namei.h>
#include <linux/mount.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/tsacct_kern.h>
#include <linux/cn_proc.h>
#include <linux/audit.h>
#include <linux/tracehook.h>
#include <linux/kmod.h>
#include <linux/fsnotify.h>
#include <linux/fs_struct.h>
#include <linux/pipe_fs_i.h>
#include <linux/oom.h>
#include <linux/compat.h>
#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/tlb.h>
#include <trace/events/task.h>
#include "internal.h"
#include <trace/events/sched.h>
int suid_dumpable = 0;
static LIST_HEAD(formats);
static DEFINE_RWLOCK(binfmt_lock);
void __register_binfmt(struct linux_binfmt * fmt, int insert)
{
BUG_ON(!fmt);
2024-09-09 08:57:42 +00:00
if (WARN_ON(!fmt->load_binary))
return;
2024-09-09 08:52:07 +00:00
write_lock(&binfmt_lock);
insert ? list_add(&fmt->lh, &formats) :
list_add_tail(&fmt->lh, &formats);
write_unlock(&binfmt_lock);
}
EXPORT_SYMBOL(__register_binfmt);
void unregister_binfmt(struct linux_binfmt * fmt)
{
write_lock(&binfmt_lock);
list_del(&fmt->lh);
write_unlock(&binfmt_lock);
}
EXPORT_SYMBOL(unregister_binfmt);
static inline void put_binfmt(struct linux_binfmt * fmt)
{
module_put(fmt->module);
}
2024-09-09 08:57:42 +00:00
#ifdef CONFIG_USELIB
2024-09-09 08:52:07 +00:00
/*
* Note that a shared library must be both readable and executable due to
* security reasons.
*
* Also note that we take the address to load from from the file itself.
*/
SYSCALL_DEFINE1(uselib, const char __user *, library)
{
2024-09-09 08:57:42 +00:00
struct linux_binfmt *fmt;
2024-09-09 08:52:07 +00:00
struct file *file;
2024-09-09 08:57:42 +00:00
struct filename *tmp = getname(library);
2024-09-09 08:52:07 +00:00
int error = PTR_ERR(tmp);
static const struct open_flags uselib_flags = {
.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
.acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
2024-09-09 08:57:42 +00:00
.intent = LOOKUP_OPEN,
.lookup_flags = LOOKUP_FOLLOW,
2024-09-09 08:52:07 +00:00
};
if (IS_ERR(tmp))
goto out;
2024-09-09 08:57:42 +00:00
file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
2024-09-09 08:52:07 +00:00
putname(tmp);
error = PTR_ERR(file);
if (IS_ERR(file))
goto out;
error = -EINVAL;
2024-09-09 08:57:42 +00:00
if (!S_ISREG(file_inode(file)->i_mode))
2024-09-09 08:52:07 +00:00
goto exit;
error = -EACCES;
if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
goto exit;
fsnotify_open(file);
error = -ENOEXEC;
2024-09-09 08:57:42 +00:00
read_lock(&binfmt_lock);
list_for_each_entry(fmt, &formats, lh) {
if (!fmt->load_shlib)
continue;
if (!try_module_get(fmt->module))
continue;
2024-09-09 08:52:07 +00:00
read_unlock(&binfmt_lock);
2024-09-09 08:57:42 +00:00
error = fmt->load_shlib(file);
read_lock(&binfmt_lock);
put_binfmt(fmt);
if (error != -ENOEXEC)
break;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
read_unlock(&binfmt_lock);
2024-09-09 08:52:07 +00:00
exit:
fput(file);
out:
return error;
}
2024-09-09 08:57:42 +00:00
#endif /* #ifdef CONFIG_USELIB */
2024-09-09 08:52:07 +00:00
#ifdef CONFIG_MMU
/*
* The nascent bprm->mm is not visible until exec_mmap() but it can
* use a lot of memory, account these pages in current->mm temporary
* for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
* change the counter back via acct_arg_size(0).
*/
static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
{
struct mm_struct *mm = current->mm;
long diff = (long)(pages - bprm->vma_pages);
if (!mm || !diff)
return;
bprm->vma_pages = pages;
add_mm_counter(mm, MM_ANONPAGES, diff);
}
static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
int write)
{
struct page *page;
int ret;
#ifdef CONFIG_STACK_GROWSUP
if (write) {
ret = expand_downwards(bprm->vma, pos);
if (ret < 0)
return NULL;
}
#endif
ret = get_user_pages(current, bprm->mm, pos,
1, write, 1, &page, NULL);
if (ret <= 0)
return NULL;
if (write) {
unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
struct rlimit *rlim;
acct_arg_size(bprm, size / PAGE_SIZE);
/*
* We've historically supported up to 32 pages (ARG_MAX)
* of argument strings even with small stacks
*/
if (size <= ARG_MAX)
return page;
/*
* Limit to 1/4-th the stack size for the argv+env strings.
* This ensures that:
* - the remaining binfmt code will not run out of stack space,
* - the program will have a reasonable amount of stack left
* to work from.
*/
rlim = current->signal->rlim;
if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
put_page(page);
return NULL;
}
}
return page;
}
static void put_arg_page(struct page *page)
{
put_page(page);
}
static void free_arg_page(struct linux_binprm *bprm, int i)
{
}
static void free_arg_pages(struct linux_binprm *bprm)
{
}
static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
struct page *page)
{
flush_cache_page(bprm->vma, pos, page_to_pfn(page));
}
static int __bprm_mm_init(struct linux_binprm *bprm)
{
int err;
struct vm_area_struct *vma = NULL;
struct mm_struct *mm = bprm->mm;
bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
if (!vma)
return -ENOMEM;
down_write(&mm->mmap_sem);
vma->vm_mm = mm;
/*
* Place the stack at the largest stack address the architecture
* supports. Later, we'll move this to an appropriate place. We don't
* use STACK_TOP because that can depend on attributes which aren't
* configured yet.
*/
BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
vma->vm_end = STACK_TOP_MAX;
vma->vm_start = vma->vm_end - PAGE_SIZE;
2024-09-09 08:57:42 +00:00
vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
2024-09-09 08:52:07 +00:00
vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
INIT_LIST_HEAD(&vma->anon_vma_chain);
err = insert_vm_struct(mm, vma);
if (err)
goto err;
mm->stack_vm = mm->total_vm = 1;
up_write(&mm->mmap_sem);
bprm->p = vma->vm_end - sizeof(void *);
return 0;
err:
up_write(&mm->mmap_sem);
bprm->vma = NULL;
kmem_cache_free(vm_area_cachep, vma);
return err;
}
static bool valid_arg_len(struct linux_binprm *bprm, long len)
{
return len <= MAX_ARG_STRLEN;
}
#else
static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
{
}
static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
int write)
{
struct page *page;
page = bprm->page[pos / PAGE_SIZE];
if (!page && write) {
page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
if (!page)
return NULL;
bprm->page[pos / PAGE_SIZE] = page;
}
return page;
}
static void put_arg_page(struct page *page)
{
}
static void free_arg_page(struct linux_binprm *bprm, int i)
{
if (bprm->page[i]) {
__free_page(bprm->page[i]);
bprm->page[i] = NULL;
}
}
static void free_arg_pages(struct linux_binprm *bprm)
{
int i;
for (i = 0; i < MAX_ARG_PAGES; i++)
free_arg_page(bprm, i);
}
static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
struct page *page)
{
}
static int __bprm_mm_init(struct linux_binprm *bprm)
{
bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
return 0;
}
static bool valid_arg_len(struct linux_binprm *bprm, long len)
{
return len <= bprm->p;
}
#endif /* CONFIG_MMU */
/*
* Create a new mm_struct and populate it with a temporary stack
* vm_area_struct. We don't have enough context at this point to set the stack
* flags, permissions, and offset, so we use temporary values. We'll update
* them later in setup_arg_pages().
*/
2024-09-09 08:57:42 +00:00
static int bprm_mm_init(struct linux_binprm *bprm)
2024-09-09 08:52:07 +00:00
{
int err;
struct mm_struct *mm = NULL;
bprm->mm = mm = mm_alloc();
err = -ENOMEM;
if (!mm)
goto err;
err = __bprm_mm_init(bprm);
if (err)
goto err;
return 0;
err:
if (mm) {
bprm->mm = NULL;
mmdrop(mm);
}
return err;
}
struct user_arg_ptr {
#ifdef CONFIG_COMPAT
bool is_compat;
#endif
union {
const char __user *const __user *native;
#ifdef CONFIG_COMPAT
2024-09-09 08:57:42 +00:00
const compat_uptr_t __user *compat;
2024-09-09 08:52:07 +00:00
#endif
} ptr;
};
static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
{
const char __user *native;
#ifdef CONFIG_COMPAT
if (unlikely(argv.is_compat)) {
compat_uptr_t compat;
if (get_user(compat, argv.ptr.compat + nr))
return ERR_PTR(-EFAULT);
return compat_ptr(compat);
}
#endif
if (get_user(native, argv.ptr.native + nr))
return ERR_PTR(-EFAULT);
return native;
}
/*
* count() counts the number of strings in array ARGV.
*/
static int count(struct user_arg_ptr argv, int max)
{
int i = 0;
if (argv.ptr.native != NULL) {
for (;;) {
const char __user *p = get_user_arg_ptr(argv, i);
if (!p)
break;
if (IS_ERR(p))
return -EFAULT;
2024-09-09 08:57:42 +00:00
if (i >= max)
2024-09-09 08:52:07 +00:00
return -E2BIG;
2024-09-09 08:57:42 +00:00
++i;
2024-09-09 08:52:07 +00:00
if (fatal_signal_pending(current))
return -ERESTARTNOHAND;
cond_resched();
}
}
return i;
}
/*
* 'copy_strings()' copies argument/environment strings from the old
* processes's memory to the new process's stack. The call to get_user_pages()
* ensures the destination page is created and not swapped out.
*/
static int copy_strings(int argc, struct user_arg_ptr argv,
struct linux_binprm *bprm)
{
struct page *kmapped_page = NULL;
char *kaddr = NULL;
unsigned long kpos = 0;
int ret;
while (argc-- > 0) {
const char __user *str;
int len;
unsigned long pos;
ret = -EFAULT;
str = get_user_arg_ptr(argv, argc);
if (IS_ERR(str))
goto out;
len = strnlen_user(str, MAX_ARG_STRLEN);
if (!len)
goto out;
ret = -E2BIG;
if (!valid_arg_len(bprm, len))
goto out;
/* We're going to work our way backwords. */
pos = bprm->p;
str += len;
bprm->p -= len;
while (len > 0) {
int offset, bytes_to_copy;
if (fatal_signal_pending(current)) {
ret = -ERESTARTNOHAND;
goto out;
}
cond_resched();
offset = pos % PAGE_SIZE;
if (offset == 0)
offset = PAGE_SIZE;
bytes_to_copy = offset;
if (bytes_to_copy > len)
bytes_to_copy = len;
offset -= bytes_to_copy;
pos -= bytes_to_copy;
str -= bytes_to_copy;
len -= bytes_to_copy;
if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
struct page *page;
page = get_arg_page(bprm, pos, 1);
if (!page) {
ret = -E2BIG;
goto out;
}
if (kmapped_page) {
flush_kernel_dcache_page(kmapped_page);
kunmap(kmapped_page);
put_arg_page(kmapped_page);
}
kmapped_page = page;
kaddr = kmap(kmapped_page);
kpos = pos & PAGE_MASK;
flush_arg_page(bprm, kpos, kmapped_page);
}
if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
ret = -EFAULT;
goto out;
}
}
}
ret = 0;
out:
if (kmapped_page) {
flush_kernel_dcache_page(kmapped_page);
kunmap(kmapped_page);
put_arg_page(kmapped_page);
}
return ret;
}
/*
* Like copy_strings, but get argv and its values from kernel memory.
*/
int copy_strings_kernel(int argc, const char *const *__argv,
struct linux_binprm *bprm)
{
int r;
mm_segment_t oldfs = get_fs();
struct user_arg_ptr argv = {
.ptr.native = (const char __user *const __user *)__argv,
};
set_fs(KERNEL_DS);
r = copy_strings(argc, argv, bprm);
set_fs(oldfs);
return r;
}
EXPORT_SYMBOL(copy_strings_kernel);
#ifdef CONFIG_MMU
/*
* During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
* the binfmt code determines where the new stack should reside, we shift it to
* its final location. The process proceeds as follows:
*
* 1) Use shift to calculate the new vma endpoints.
* 2) Extend vma to cover both the old and new ranges. This ensures the
* arguments passed to subsequent functions are consistent.
* 3) Move vma's page tables to the new range.
* 4) Free up any cleared pgd range.
* 5) Shrink the vma to cover only the new range.
*/
static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long old_start = vma->vm_start;
unsigned long old_end = vma->vm_end;
unsigned long length = old_end - old_start;
unsigned long new_start = old_start - shift;
unsigned long new_end = old_end - shift;
struct mmu_gather tlb;
BUG_ON(new_start > new_end);
/*
* ensure there are no vmas between where we want to go
* and where we are
*/
if (vma != find_vma(mm, new_start))
return -EFAULT;
/*
* cover the whole range: [new_start, old_end)
*/
if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
return -ENOMEM;
/*
* move the page tables downwards, on failure we rely on
* process cleanup to remove whatever mess we made.
*/
if (length != move_page_tables(vma, old_start,
2024-09-09 08:57:42 +00:00
vma, new_start, length, false))
2024-09-09 08:52:07 +00:00
return -ENOMEM;
lru_add_drain();
2024-09-09 08:57:42 +00:00
tlb_gather_mmu(&tlb, mm, old_start, old_end);
2024-09-09 08:52:07 +00:00
if (new_end > old_start) {
/*
* when the old and new regions overlap clear from new_end.
*/
free_pgd_range(&tlb, new_end, old_end, new_end,
2024-09-09 08:57:42 +00:00
vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
2024-09-09 08:52:07 +00:00
} else {
/*
* otherwise, clean from old_start; this is done to not touch
* the address space in [new_end, old_start) some architectures
* have constraints on va-space that make this illegal (IA64) -
* for the others its just a little faster.
*/
free_pgd_range(&tlb, old_start, old_end, new_end,
2024-09-09 08:57:42 +00:00
vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
tlb_finish_mmu(&tlb, old_start, old_end);
2024-09-09 08:52:07 +00:00
/*
* Shrink the vma to just the new range. Always succeeds.
*/
vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
return 0;
}
/*
* Finalizes the stack vm_area_struct. The flags and permissions are updated,
* the stack is optionally relocated, and some extra space is added.
*/
int setup_arg_pages(struct linux_binprm *bprm,
unsigned long stack_top,
int executable_stack)
{
unsigned long ret;
unsigned long stack_shift;
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma = bprm->vma;
struct vm_area_struct *prev = NULL;
unsigned long vm_flags;
unsigned long stack_base;
unsigned long stack_size;
unsigned long stack_expand;
unsigned long rlim_stack;
#ifdef CONFIG_STACK_GROWSUP
2024-09-09 08:57:42 +00:00
/* Limit stack size */
2024-09-09 08:52:07 +00:00
stack_base = rlimit_max(RLIMIT_STACK);
2024-09-09 08:57:42 +00:00
if (stack_base > STACK_SIZE_MAX)
stack_base = STACK_SIZE_MAX;
/* Add space for stack randomization. */
stack_base += (STACK_RND_MASK << PAGE_SHIFT);
2024-09-09 08:52:07 +00:00
/* Make sure we didn't let the argument array grow too large. */
if (vma->vm_end - vma->vm_start > stack_base)
return -ENOMEM;
stack_base = PAGE_ALIGN(stack_top - stack_base);
stack_shift = vma->vm_start - stack_base;
mm->arg_start = bprm->p - stack_shift;
bprm->p = vma->vm_end - stack_shift;
#else
stack_top = arch_align_stack(stack_top);
stack_top = PAGE_ALIGN(stack_top);
if (unlikely(stack_top < mmap_min_addr) ||
unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
return -ENOMEM;
stack_shift = vma->vm_end - stack_top;
bprm->p -= stack_shift;
mm->arg_start = bprm->p;
#endif
if (bprm->loader)
bprm->loader -= stack_shift;
bprm->exec -= stack_shift;
down_write(&mm->mmap_sem);
vm_flags = VM_STACK_FLAGS;
/*
* Adjust stack execute permissions; explicitly enable for
* EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
* (arch default) otherwise.
*/
if (unlikely(executable_stack == EXSTACK_ENABLE_X))
vm_flags |= VM_EXEC;
else if (executable_stack == EXSTACK_DISABLE_X)
vm_flags &= ~VM_EXEC;
vm_flags |= mm->def_flags;
vm_flags |= VM_STACK_INCOMPLETE_SETUP;
ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
vm_flags);
if (ret)
goto out_unlock;
BUG_ON(prev != vma);
/* Move stack pages down in memory. */
if (stack_shift) {
ret = shift_arg_pages(vma, stack_shift);
if (ret)
goto out_unlock;
}
/* mprotect_fixup is overkill to remove the temporary stack flags */
vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
stack_size = vma->vm_end - vma->vm_start;
/*
* Align this down to a page boundary as expand_stack
* will align it up.
*/
rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
#ifdef CONFIG_STACK_GROWSUP
if (stack_size + stack_expand > rlim_stack)
stack_base = vma->vm_start + rlim_stack;
else
stack_base = vma->vm_end + stack_expand;
#else
if (stack_size + stack_expand > rlim_stack)
stack_base = vma->vm_end - rlim_stack;
else
stack_base = vma->vm_start - stack_expand;
#endif
current->mm->start_stack = bprm->p;
ret = expand_stack(vma, stack_base);
if (ret)
ret = -EFAULT;
out_unlock:
up_write(&mm->mmap_sem);
return ret;
}
EXPORT_SYMBOL(setup_arg_pages);
#endif /* CONFIG_MMU */
2024-09-09 08:57:42 +00:00
static struct file *do_open_exec(struct filename *name)
2024-09-09 08:52:07 +00:00
{
struct file *file;
int err;
static const struct open_flags open_exec_flags = {
.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
.acc_mode = MAY_EXEC | MAY_OPEN,
2024-09-09 08:57:42 +00:00
.intent = LOOKUP_OPEN,
.lookup_flags = LOOKUP_FOLLOW,
2024-09-09 08:52:07 +00:00
};
2024-09-09 08:57:42 +00:00
file = do_filp_open(AT_FDCWD, name, &open_exec_flags);
2024-09-09 08:52:07 +00:00
if (IS_ERR(file))
goto out;
err = -EACCES;
2024-09-09 08:57:42 +00:00
if (!S_ISREG(file_inode(file)->i_mode))
2024-09-09 08:52:07 +00:00
goto exit;
if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
goto exit;
fsnotify_open(file);
err = deny_write_access(file);
if (err)
goto exit;
out:
return file;
exit:
fput(file);
return ERR_PTR(err);
}
2024-09-09 08:57:42 +00:00
struct file *open_exec(const char *name)
{
struct filename tmp = { .name = name };
return do_open_exec(&tmp);
}
2024-09-09 08:52:07 +00:00
EXPORT_SYMBOL(open_exec);
int kernel_read(struct file *file, loff_t offset,
char *addr, unsigned long count)
{
mm_segment_t old_fs;
loff_t pos = offset;
int result;
old_fs = get_fs();
set_fs(get_ds());
/* The cast to a user pointer is valid due to the set_fs() */
result = vfs_read(file, (void __user *)addr, count, &pos);
set_fs(old_fs);
return result;
}
EXPORT_SYMBOL(kernel_read);
2024-09-09 08:57:42 +00:00
ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
{
ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
if (res > 0)
flush_icache_range(addr, addr + len);
return res;
}
EXPORT_SYMBOL(read_code);
2024-09-09 08:52:07 +00:00
static int exec_mmap(struct mm_struct *mm)
{
struct task_struct *tsk;
2024-09-09 08:57:42 +00:00
struct mm_struct *old_mm, *active_mm;
2024-09-09 08:52:07 +00:00
/* Notify parent that we're no longer interested in the old VM */
tsk = current;
old_mm = current->mm;
mm_release(tsk, old_mm);
if (old_mm) {
2024-09-09 08:57:42 +00:00
sync_mm_rss(old_mm);
2024-09-09 08:52:07 +00:00
/*
* Make sure that if there is a core dump in progress
* for the old mm, we get out and die instead of going
* through with the exec. We must hold mmap_sem around
* checking core_state and changing tsk->mm.
*/
down_read(&old_mm->mmap_sem);
if (unlikely(old_mm->core_state)) {
up_read(&old_mm->mmap_sem);
return -EINTR;
}
}
task_lock(tsk);
active_mm = tsk->active_mm;
tsk->mm = mm;
tsk->active_mm = mm;
activate_mm(active_mm, mm);
2024-09-09 08:57:42 +00:00
tsk->mm->vmacache_seqnum = 0;
vmacache_flush(tsk);
2024-09-09 08:52:07 +00:00
task_unlock(tsk);
if (old_mm) {
up_read(&old_mm->mmap_sem);
BUG_ON(active_mm != old_mm);
setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
mm_update_next_owner(old_mm);
mmput(old_mm);
return 0;
}
mmdrop(active_mm);
return 0;
}
/*
* This function makes sure the current process has its own signal table,
* so that flush_signal_handlers can later reset the handlers without
* disturbing other processes. (Other processes might share the signal
* table via the CLONE_SIGHAND option to clone().)
*/
static int de_thread(struct task_struct *tsk)
{
struct signal_struct *sig = tsk->signal;
struct sighand_struct *oldsighand = tsk->sighand;
spinlock_t *lock = &oldsighand->siglock;
if (thread_group_empty(tsk))
goto no_thread_group;
/*
* Kill all other threads in the thread group.
*/
spin_lock_irq(lock);
if (signal_group_exit(sig)) {
/*
* Another group action in progress, just
* return so that the signal is processed.
*/
spin_unlock_irq(lock);
return -EAGAIN;
}
sig->group_exit_task = tsk;
sig->notify_count = zap_other_threads(tsk);
if (!thread_group_leader(tsk))
sig->notify_count--;
while (sig->notify_count) {
2024-09-09 08:57:42 +00:00
__set_current_state(TASK_KILLABLE);
2024-09-09 08:52:07 +00:00
spin_unlock_irq(lock);
schedule();
2024-09-09 08:57:42 +00:00
if (unlikely(__fatal_signal_pending(tsk)))
goto killed;
2024-09-09 08:52:07 +00:00
spin_lock_irq(lock);
}
spin_unlock_irq(lock);
/*
* At this point all other threads have exited, all we have to
* do is to wait for the thread group leader to become inactive,
* and to assume its PID:
*/
if (!thread_group_leader(tsk)) {
struct task_struct *leader = tsk->group_leader;
sig->notify_count = -1; /* for exit_notify() */
for (;;) {
2024-09-09 08:57:42 +00:00
threadgroup_change_begin(tsk);
2024-09-09 08:52:07 +00:00
write_lock_irq(&tasklist_lock);
if (likely(leader->exit_state))
break;
2024-09-09 08:57:42 +00:00
__set_current_state(TASK_KILLABLE);
2024-09-09 08:52:07 +00:00
write_unlock_irq(&tasklist_lock);
2024-09-09 08:57:42 +00:00
threadgroup_change_end(tsk);
2024-09-09 08:52:07 +00:00
schedule();
2024-09-09 08:57:42 +00:00
if (unlikely(__fatal_signal_pending(tsk)))
goto killed;
2024-09-09 08:52:07 +00:00
}
/*
* The only record we have of the real-time age of a
* process, regardless of execs it's done, is start_time.
* All the past CPU time is accumulated in signal_struct
* from sister threads now dead. But in this non-leader
* exec, nothing survives from the original leader thread,
* whose birth marks the true age of this process now.
* When we take on its identity by switching to its PID, we
* also take its birthdate (always earlier than our own).
*/
tsk->start_time = leader->start_time;
2024-09-09 08:57:42 +00:00
tsk->real_start_time = leader->real_start_time;
2024-09-09 08:52:07 +00:00
BUG_ON(!same_thread_group(leader, tsk));
BUG_ON(has_group_leader_pid(tsk));
/*
* An exec() starts a new thread group with the
* TGID of the previous thread group. Rehash the
* two threads with a switched PID, and release
* the former thread group leader:
*/
/* Become a process group leader with the old leader's pid.
* The old leader becomes a thread of the this thread group.
* Note: The old leader also uses this pid until release_task
* is called. Odd but simple and correct.
*/
tsk->pid = leader->pid;
2024-09-09 08:57:42 +00:00
change_pid(tsk, PIDTYPE_PID, task_pid(leader));
2024-09-09 08:52:07 +00:00
transfer_pid(leader, tsk, PIDTYPE_PGID);
transfer_pid(leader, tsk, PIDTYPE_SID);
list_replace_rcu(&leader->tasks, &tsk->tasks);
list_replace_init(&leader->sibling, &tsk->sibling);
tsk->group_leader = tsk;
leader->group_leader = tsk;
tsk->exit_signal = SIGCHLD;
leader->exit_signal = -1;
BUG_ON(leader->exit_state != EXIT_ZOMBIE);
leader->exit_state = EXIT_DEAD;
/*
* We are going to release_task()->ptrace_unlink() silently,
* the tracer can sleep in do_wait(). EXIT_DEAD guarantees
* the tracer wont't block again waiting for this thread.
*/
if (unlikely(leader->ptrace))
__wake_up_parent(leader, leader->parent);
write_unlock_irq(&tasklist_lock);
2024-09-09 08:57:42 +00:00
threadgroup_change_end(tsk);
2024-09-09 08:52:07 +00:00
release_task(leader);
}
sig->group_exit_task = NULL;
sig->notify_count = 0;
no_thread_group:
/* we have changed execution domain */
tsk->exit_signal = SIGCHLD;
exit_itimers(sig);
flush_itimer_signals();
if (atomic_read(&oldsighand->count) != 1) {
struct sighand_struct *newsighand;
/*
* This ->sighand is shared with the CLONE_SIGHAND
* but not CLONE_THREAD task, switch to the new one.
*/
newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
if (!newsighand)
return -ENOMEM;
atomic_set(&newsighand->count, 1);
memcpy(newsighand->action, oldsighand->action,
sizeof(newsighand->action));
write_lock_irq(&tasklist_lock);
spin_lock(&oldsighand->siglock);
rcu_assign_pointer(tsk->sighand, newsighand);
spin_unlock(&oldsighand->siglock);
write_unlock_irq(&tasklist_lock);
__cleanup_sighand(oldsighand);
}
BUG_ON(!thread_group_leader(tsk));
return 0;
2024-09-09 08:57:42 +00:00
killed:
/* protects against exit_notify() and __exit_signal() */
read_lock(&tasklist_lock);
sig->group_exit_task = NULL;
sig->notify_count = 0;
read_unlock(&tasklist_lock);
return -EAGAIN;
2024-09-09 08:52:07 +00:00
}
char *get_task_comm(char *buf, struct task_struct *tsk)
{
/* buf must be at least sizeof(tsk->comm) in size */
task_lock(tsk);
strncpy(buf, tsk->comm, sizeof(tsk->comm));
task_unlock(tsk);
return buf;
}
EXPORT_SYMBOL_GPL(get_task_comm);
2024-09-09 08:57:42 +00:00
/*
* These functions flushes out all traces of the currently running executable
* so that a new one can be started
*/
void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
2024-09-09 08:52:07 +00:00
{
task_lock(tsk);
trace_task_rename(tsk, buf);
strlcpy(tsk->comm, buf, sizeof(tsk->comm));
task_unlock(tsk);
2024-09-09 08:57:42 +00:00
perf_event_comm(tsk, exec);
2024-09-09 08:52:07 +00:00
}
int flush_old_exec(struct linux_binprm * bprm)
{
int retval;
/*
* Make sure we have a private signal table and that
* we are unassociated from the previous thread group.
*/
retval = de_thread(current);
if (retval)
goto out;
set_mm_exe_file(bprm->mm, bprm->file);
/*
* Release all of the old mmap stuff
*/
acct_arg_size(bprm, 0);
retval = exec_mmap(bprm->mm);
if (retval)
goto out;
bprm->mm = NULL; /* We're using it now */
set_fs(USER_DS);
2024-09-09 08:57:42 +00:00
current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
PF_NOFREEZE | PF_NO_SETAFFINITY);
2024-09-09 08:52:07 +00:00
flush_thread();
current->personality &= ~bprm->per_clear;
return 0;
out:
return retval;
}
EXPORT_SYMBOL(flush_old_exec);
void would_dump(struct linux_binprm *bprm, struct file *file)
{
2024-09-09 08:57:42 +00:00
if (inode_permission(file_inode(file), MAY_READ) < 0)
2024-09-09 08:52:07 +00:00
bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
}
EXPORT_SYMBOL(would_dump);
void setup_new_exec(struct linux_binprm * bprm)
{
arch_pick_mmap_layout(current->mm);
/* This is the point of no return */
current->sas_ss_sp = current->sas_ss_size = 0;
2024-09-09 08:57:42 +00:00
if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
set_dumpable(current->mm, SUID_DUMP_USER);
2024-09-09 08:52:07 +00:00
else
set_dumpable(current->mm, suid_dumpable);
2024-09-09 08:57:42 +00:00
perf_event_exec();
__set_task_comm(current, kbasename(bprm->filename), true);
2024-09-09 08:52:07 +00:00
/* Set the new mm task size. We have to do that late because it may
* depend on TIF_32BIT which is only updated in flush_thread() on
* some architectures like powerpc
*/
current->mm->task_size = TASK_SIZE;
/* install the new credentials */
2024-09-09 08:57:42 +00:00
if (!uid_eq(bprm->cred->uid, current_euid()) ||
!gid_eq(bprm->cred->gid, current_egid())) {
2024-09-09 08:52:07 +00:00
current->pdeath_signal = 0;
} else {
would_dump(bprm, bprm->file);
if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
set_dumpable(current->mm, suid_dumpable);
}
/* An exec changes our domain. We are no longer part of the thread
group */
current->self_exec_id++;
flush_signal_handlers(current, 0);
2024-09-09 08:57:42 +00:00
do_close_on_exec(current->files);
2024-09-09 08:52:07 +00:00
}
EXPORT_SYMBOL(setup_new_exec);
/*
* Prepare credentials and lock ->cred_guard_mutex.
* install_exec_creds() commits the new creds and drops the lock.
* Or, if exec fails before, free_bprm() should release ->cred and
* and unlock.
*/
int prepare_bprm_creds(struct linux_binprm *bprm)
{
if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
return -ERESTARTNOINTR;
bprm->cred = prepare_exec_creds();
if (likely(bprm->cred))
return 0;
mutex_unlock(&current->signal->cred_guard_mutex);
return -ENOMEM;
}
2024-09-09 08:57:42 +00:00
static void free_bprm(struct linux_binprm *bprm)
2024-09-09 08:52:07 +00:00
{
free_arg_pages(bprm);
if (bprm->cred) {
mutex_unlock(&current->signal->cred_guard_mutex);
abort_creds(bprm->cred);
}
2024-09-09 08:57:42 +00:00
if (bprm->file) {
allow_write_access(bprm->file);
fput(bprm->file);
}
/* If a binfmt changed the interp, free it. */
if (bprm->interp != bprm->filename)
kfree(bprm->interp);
2024-09-09 08:52:07 +00:00
kfree(bprm);
}
2024-09-09 08:57:42 +00:00
int bprm_change_interp(char *interp, struct linux_binprm *bprm)
{
/* If a binfmt changed the interp, free it first. */
if (bprm->interp != bprm->filename)
kfree(bprm->interp);
bprm->interp = kstrdup(interp, GFP_KERNEL);
if (!bprm->interp)
return -ENOMEM;
return 0;
}
EXPORT_SYMBOL(bprm_change_interp);
2024-09-09 08:52:07 +00:00
/*
* install the new credentials for this executable
*/
void install_exec_creds(struct linux_binprm *bprm)
{
security_bprm_committing_creds(bprm);
commit_creds(bprm->cred);
bprm->cred = NULL;
2024-09-09 08:57:42 +00:00
/*
* Disable monitoring for regular users
* when executing setuid binaries. Must
* wait until new credentials are committed
* by commit_creds() above
*/
if (get_dumpable(current->mm) != SUID_DUMP_USER)
perf_event_exit_task(current);
2024-09-09 08:52:07 +00:00
/*
* cred_guard_mutex must be held at least to this point to prevent
* ptrace_attach() from altering our determination of the task's
* credentials; any time after this it may be unlocked.
*/
security_bprm_committed_creds(bprm);
mutex_unlock(&current->signal->cred_guard_mutex);
}
EXPORT_SYMBOL(install_exec_creds);
/*
* determine how safe it is to execute the proposed program
* - the caller must hold ->cred_guard_mutex to protect against
2024-09-09 08:57:42 +00:00
* PTRACE_ATTACH or seccomp thread-sync
2024-09-09 08:52:07 +00:00
*/
2024-09-09 08:57:42 +00:00
static void check_unsafe_exec(struct linux_binprm *bprm)
2024-09-09 08:52:07 +00:00
{
struct task_struct *p = current, *t;
unsigned n_fs;
if (p->ptrace) {
if (p->ptrace & PT_PTRACE_CAP)
bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
else
bprm->unsafe |= LSM_UNSAFE_PTRACE;
}
2024-09-09 08:57:42 +00:00
/*
* This isn't strictly necessary, but it makes it harder for LSMs to
* mess up.
*/
if (task_no_new_privs(current))
bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
t = p;
2024-09-09 08:52:07 +00:00
n_fs = 1;
spin_lock(&p->fs->lock);
rcu_read_lock();
2024-09-09 08:57:42 +00:00
while_each_thread(p, t) {
2024-09-09 08:52:07 +00:00
if (t->fs == p->fs)
n_fs++;
}
rcu_read_unlock();
2024-09-09 08:57:42 +00:00
if (p->fs->users > n_fs)
2024-09-09 08:52:07 +00:00
bprm->unsafe |= LSM_UNSAFE_SHARE;
2024-09-09 08:57:42 +00:00
else
p->fs->in_exec = 1;
2024-09-09 08:52:07 +00:00
spin_unlock(&p->fs->lock);
2024-09-09 08:57:42 +00:00
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
static void bprm_fill_uid(struct linux_binprm *bprm)
{
struct inode *inode;
unsigned int mode;
kuid_t uid;
kgid_t gid;
/* clear any previous set[ug]id data from a previous binary */
bprm->cred->euid = current_euid();
bprm->cred->egid = current_egid();
if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
return;
if (task_no_new_privs(current))
return;
inode = file_inode(bprm->file);
mode = READ_ONCE(inode->i_mode);
if (!(mode & (S_ISUID|S_ISGID)))
return;
/* Be careful if suid/sgid is set */
mutex_lock(&inode->i_mutex);
/* reload atomically mode/uid/gid now that lock held */
mode = inode->i_mode;
uid = inode->i_uid;
gid = inode->i_gid;
mutex_unlock(&inode->i_mutex);
/* We ignore suid/sgid if there are no mappings for them in the ns */
if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
!kgid_has_mapping(bprm->cred->user_ns, gid))
return;
if (mode & S_ISUID) {
bprm->per_clear |= PER_CLEAR_ON_SETID;
bprm->cred->euid = uid;
}
if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
bprm->per_clear |= PER_CLEAR_ON_SETID;
bprm->cred->egid = gid;
}
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
/*
* Fill the binprm structure from the inode.
2024-09-09 08:52:07 +00:00
* Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
*
* This may be called multiple times for binary chains (scripts for example).
*/
int prepare_binprm(struct linux_binprm *bprm)
{
int retval;
2024-09-09 08:57:42 +00:00
bprm_fill_uid(bprm);
2024-09-09 08:52:07 +00:00
/* fill in binprm security blob */
retval = security_bprm_set_creds(bprm);
if (retval)
return retval;
bprm->cred_prepared = 1;
memset(bprm->buf, 0, BINPRM_BUF_SIZE);
return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
}
EXPORT_SYMBOL(prepare_binprm);
/*
* Arguments are '\0' separated strings found at the location bprm->p
* points to; chop off the first by relocating brpm->p to right after
* the first '\0' encountered.
*/
int remove_arg_zero(struct linux_binprm *bprm)
{
int ret = 0;
unsigned long offset;
char *kaddr;
struct page *page;
if (!bprm->argc)
return 0;
do {
offset = bprm->p & ~PAGE_MASK;
page = get_arg_page(bprm, bprm->p, 0);
if (!page) {
ret = -EFAULT;
goto out;
}
kaddr = kmap_atomic(page);
for (; offset < PAGE_SIZE && kaddr[offset];
offset++, bprm->p++)
;
kunmap_atomic(kaddr);
put_arg_page(page);
if (offset == PAGE_SIZE)
free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
} while (offset == PAGE_SIZE);
bprm->p++;
bprm->argc--;
ret = 0;
out:
return ret;
}
EXPORT_SYMBOL(remove_arg_zero);
2024-09-09 08:57:42 +00:00
#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
2024-09-09 08:52:07 +00:00
/*
* cycle the list of binary formats handler, until one recognizes the image
*/
2024-09-09 08:57:42 +00:00
int search_binary_handler(struct linux_binprm *bprm)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
bool need_retry = IS_ENABLED(CONFIG_MODULES);
2024-09-09 08:52:07 +00:00
struct linux_binfmt *fmt;
2024-09-09 08:57:42 +00:00
int retval;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
/* This allows 4 levels of binfmt rewrites before failing hard. */
if (bprm->recursion_depth > 5)
return -ELOOP;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
retval = security_bprm_check(bprm);
2024-09-09 08:52:07 +00:00
if (retval)
return retval;
retval = -ENOENT;
2024-09-09 08:57:42 +00:00
retry:
read_lock(&binfmt_lock);
list_for_each_entry(fmt, &formats, lh) {
if (!try_module_get(fmt->module))
continue;
read_unlock(&binfmt_lock);
bprm->recursion_depth++;
retval = fmt->load_binary(bprm);
2024-09-09 08:52:07 +00:00
read_lock(&binfmt_lock);
2024-09-09 08:57:42 +00:00
put_binfmt(fmt);
bprm->recursion_depth--;
if (retval < 0 && !bprm->mm) {
/* we got to flush_old_exec() and failed after it */
2024-09-09 08:52:07 +00:00
read_unlock(&binfmt_lock);
2024-09-09 08:57:42 +00:00
force_sigsegv(SIGSEGV, current);
return retval;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
if (retval != -ENOEXEC || !bprm->file) {
read_unlock(&binfmt_lock);
return retval;
2024-09-09 08:52:07 +00:00
}
}
2024-09-09 08:57:42 +00:00
read_unlock(&binfmt_lock);
if (need_retry) {
if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
printable(bprm->buf[2]) && printable(bprm->buf[3]))
return retval;
if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
return retval;
need_retry = false;
goto retry;
}
2024-09-09 08:52:07 +00:00
return retval;
}
EXPORT_SYMBOL(search_binary_handler);
2024-09-09 08:57:42 +00:00
static int exec_binprm(struct linux_binprm *bprm)
{
pid_t old_pid, old_vpid;
int ret;
/* Need to fetch pid before load_binary changes it */
old_pid = current->pid;
rcu_read_lock();
old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
rcu_read_unlock();
ret = search_binary_handler(bprm);
if (ret >= 0) {
audit_bprm(bprm);
trace_sched_process_exec(current, old_pid, bprm);
ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
proc_exec_connector(current);
}
return ret;
}
2024-09-09 08:52:07 +00:00
/*
* sys_execve() executes a new program.
*/
2024-09-09 08:57:42 +00:00
static int do_execve_common(struct filename *filename,
2024-09-09 08:52:07 +00:00
struct user_arg_ptr argv,
2024-09-09 08:57:42 +00:00
struct user_arg_ptr envp)
2024-09-09 08:52:07 +00:00
{
struct linux_binprm *bprm;
struct file *file;
struct files_struct *displaced;
int retval;
2024-09-09 08:57:42 +00:00
if (IS_ERR(filename))
return PTR_ERR(filename);
2024-09-09 08:52:07 +00:00
/*
* We move the actual failure in case of RLIMIT_NPROC excess from
* set*uid() to execve() because too many poorly written programs
* don't check setuid() return code. Here we additionally recheck
* whether NPROC limit is still exceeded.
*/
if ((current->flags & PF_NPROC_EXCEEDED) &&
2024-09-09 08:57:42 +00:00
atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
2024-09-09 08:52:07 +00:00
retval = -EAGAIN;
goto out_ret;
}
/* We're below the limit (still or again), so we don't want to make
* further execve() calls fail. */
current->flags &= ~PF_NPROC_EXCEEDED;
retval = unshare_files(&displaced);
if (retval)
goto out_ret;
retval = -ENOMEM;
bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
if (!bprm)
goto out_files;
retval = prepare_bprm_creds(bprm);
if (retval)
goto out_free;
2024-09-09 08:57:42 +00:00
check_unsafe_exec(bprm);
2024-09-09 08:52:07 +00:00
current->in_execve = 1;
2024-09-09 08:57:42 +00:00
file = do_open_exec(filename);
2024-09-09 08:52:07 +00:00
retval = PTR_ERR(file);
if (IS_ERR(file))
goto out_unmark;
sched_exec();
bprm->file = file;
2024-09-09 08:57:42 +00:00
bprm->filename = bprm->interp = filename->name;
2024-09-09 08:52:07 +00:00
retval = bprm_mm_init(bprm);
if (retval)
2024-09-09 08:57:42 +00:00
goto out_unmark;
2024-09-09 08:52:07 +00:00
bprm->argc = count(argv, MAX_ARG_STRINGS);
if ((retval = bprm->argc) < 0)
goto out;
bprm->envc = count(envp, MAX_ARG_STRINGS);
if ((retval = bprm->envc) < 0)
goto out;
retval = prepare_binprm(bprm);
if (retval < 0)
goto out;
retval = copy_strings_kernel(1, &bprm->filename, bprm);
if (retval < 0)
goto out;
bprm->exec = bprm->p;
retval = copy_strings(bprm->envc, envp, bprm);
if (retval < 0)
goto out;
retval = copy_strings(bprm->argc, argv, bprm);
if (retval < 0)
goto out;
2024-09-09 08:57:42 +00:00
retval = exec_binprm(bprm);
2024-09-09 08:52:07 +00:00
if (retval < 0)
goto out;
/* execve succeeded */
current->fs->in_exec = 0;
current->in_execve = 0;
acct_update_integrals(current);
2024-09-09 08:57:42 +00:00
task_numa_free(current);
2024-09-09 08:52:07 +00:00
free_bprm(bprm);
2024-09-09 08:57:42 +00:00
putname(filename);
2024-09-09 08:52:07 +00:00
if (displaced)
put_files_struct(displaced);
return retval;
out:
if (bprm->mm) {
acct_arg_size(bprm, 0);
mmput(bprm->mm);
}
out_unmark:
2024-09-09 08:57:42 +00:00
current->fs->in_exec = 0;
2024-09-09 08:52:07 +00:00
current->in_execve = 0;
out_free:
free_bprm(bprm);
out_files:
if (displaced)
reset_files_struct(displaced);
out_ret:
2024-09-09 08:57:42 +00:00
putname(filename);
2024-09-09 08:52:07 +00:00
return retval;
}
2024-09-09 08:57:42 +00:00
int do_execve(struct filename *filename,
2024-09-09 08:52:07 +00:00
const char __user *const __user *__argv,
2024-09-09 08:57:42 +00:00
const char __user *const __user *__envp)
2024-09-09 08:52:07 +00:00
{
struct user_arg_ptr argv = { .ptr.native = __argv };
struct user_arg_ptr envp = { .ptr.native = __envp };
2024-09-09 08:57:42 +00:00
return do_execve_common(filename, argv, envp);
2024-09-09 08:52:07 +00:00
}
#ifdef CONFIG_COMPAT
2024-09-09 08:57:42 +00:00
static int compat_do_execve(struct filename *filename,
const compat_uptr_t __user *__argv,
const compat_uptr_t __user *__envp)
2024-09-09 08:52:07 +00:00
{
struct user_arg_ptr argv = {
.is_compat = true,
.ptr.compat = __argv,
};
struct user_arg_ptr envp = {
.is_compat = true,
.ptr.compat = __envp,
};
2024-09-09 08:57:42 +00:00
return do_execve_common(filename, argv, envp);
2024-09-09 08:52:07 +00:00
}
#endif
void set_binfmt(struct linux_binfmt *new)
{
struct mm_struct *mm = current->mm;
if (mm->binfmt)
module_put(mm->binfmt->module);
mm->binfmt = new;
if (new)
__module_get(new->module);
}
EXPORT_SYMBOL(set_binfmt);
/*
2024-09-09 08:57:42 +00:00
* set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2024-09-09 08:52:07 +00:00
*/
void set_dumpable(struct mm_struct *mm, int value)
{
2024-09-09 08:57:42 +00:00
unsigned long old, new;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
return;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
do {
old = ACCESS_ONCE(mm->flags);
new = (old & ~MMF_DUMPABLE_MASK) | value;
} while (cmpxchg(&mm->flags, old, new) != old);
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
SYSCALL_DEFINE3(execve,
const char __user *, filename,
const char __user *const __user *, argv,
const char __user *const __user *, envp)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
return do_execve(getname(filename), argv, envp);
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
const compat_uptr_t __user *, argv,
const compat_uptr_t __user *, envp)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
return compat_do_execve(getname(filename), argv, envp);
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
#endif