M7350/kernel/drivers/clocksource/sh_tmu.c

688 lines
15 KiB
C
Raw Permalink Normal View History

2024-09-09 08:52:07 +00:00
/*
* SuperH Timer Support - TMU
*
* Copyright (C) 2009 Magnus Damm
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
2024-09-09 08:57:42 +00:00
#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/clocksource.h>
#include <linux/delay.h>
#include <linux/err.h>
2024-09-09 08:52:07 +00:00
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
2024-09-09 08:57:42 +00:00
#include <linux/ioport.h>
2024-09-09 08:52:07 +00:00
#include <linux/irq.h>
#include <linux/module.h>
2024-09-09 08:57:42 +00:00
#include <linux/of.h>
#include <linux/platform_device.h>
2024-09-09 08:52:07 +00:00
#include <linux/pm_domain.h>
2024-09-09 08:57:42 +00:00
#include <linux/pm_runtime.h>
#include <linux/sh_timer.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
enum sh_tmu_model {
SH_TMU,
SH_TMU_SH3,
};
struct sh_tmu_device;
struct sh_tmu_channel {
struct sh_tmu_device *tmu;
unsigned int index;
void __iomem *base;
int irq;
2024-09-09 08:52:07 +00:00
unsigned long rate;
unsigned long periodic;
struct clock_event_device ced;
struct clocksource cs;
2024-09-09 08:57:42 +00:00
bool cs_enabled;
unsigned int enable_count;
2024-09-09 08:52:07 +00:00
};
2024-09-09 08:57:42 +00:00
struct sh_tmu_device {
struct platform_device *pdev;
void __iomem *mapbase;
struct clk *clk;
enum sh_tmu_model model;
raw_spinlock_t lock; /* Protect the shared start/stop register */
struct sh_tmu_channel *channels;
unsigned int num_channels;
bool has_clockevent;
bool has_clocksource;
};
2024-09-09 08:52:07 +00:00
#define TSTR -1 /* shared register */
#define TCOR 0 /* channel register */
#define TCNT 1 /* channel register */
#define TCR 2 /* channel register */
2024-09-09 08:57:42 +00:00
#define TCR_UNF (1 << 8)
#define TCR_UNIE (1 << 5)
#define TCR_TPSC_CLK4 (0 << 0)
#define TCR_TPSC_CLK16 (1 << 0)
#define TCR_TPSC_CLK64 (2 << 0)
#define TCR_TPSC_CLK256 (3 << 0)
#define TCR_TPSC_CLK1024 (4 << 0)
#define TCR_TPSC_MASK (7 << 0)
static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr)
2024-09-09 08:52:07 +00:00
{
unsigned long offs;
2024-09-09 08:57:42 +00:00
if (reg_nr == TSTR) {
switch (ch->tmu->model) {
case SH_TMU_SH3:
return ioread8(ch->tmu->mapbase + 2);
case SH_TMU:
return ioread8(ch->tmu->mapbase + 4);
}
}
2024-09-09 08:52:07 +00:00
offs = reg_nr << 2;
if (reg_nr == TCR)
2024-09-09 08:57:42 +00:00
return ioread16(ch->base + offs);
2024-09-09 08:52:07 +00:00
else
2024-09-09 08:57:42 +00:00
return ioread32(ch->base + offs);
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr,
2024-09-09 08:52:07 +00:00
unsigned long value)
{
unsigned long offs;
if (reg_nr == TSTR) {
2024-09-09 08:57:42 +00:00
switch (ch->tmu->model) {
case SH_TMU_SH3:
return iowrite8(value, ch->tmu->mapbase + 2);
case SH_TMU:
return iowrite8(value, ch->tmu->mapbase + 4);
}
2024-09-09 08:52:07 +00:00
}
offs = reg_nr << 2;
if (reg_nr == TCR)
2024-09-09 08:57:42 +00:00
iowrite16(value, ch->base + offs);
2024-09-09 08:52:07 +00:00
else
2024-09-09 08:57:42 +00:00
iowrite32(value, ch->base + offs);
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start)
2024-09-09 08:52:07 +00:00
{
unsigned long flags, value;
/* start stop register shared by multiple timer channels */
2024-09-09 08:57:42 +00:00
raw_spin_lock_irqsave(&ch->tmu->lock, flags);
value = sh_tmu_read(ch, TSTR);
2024-09-09 08:52:07 +00:00
if (start)
2024-09-09 08:57:42 +00:00
value |= 1 << ch->index;
2024-09-09 08:52:07 +00:00
else
2024-09-09 08:57:42 +00:00
value &= ~(1 << ch->index);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
sh_tmu_write(ch, TSTR, value);
raw_spin_unlock_irqrestore(&ch->tmu->lock, flags);
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
static int __sh_tmu_enable(struct sh_tmu_channel *ch)
2024-09-09 08:52:07 +00:00
{
int ret;
/* enable clock */
2024-09-09 08:57:42 +00:00
ret = clk_enable(ch->tmu->clk);
2024-09-09 08:52:07 +00:00
if (ret) {
2024-09-09 08:57:42 +00:00
dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n",
ch->index);
2024-09-09 08:52:07 +00:00
return ret;
}
/* make sure channel is disabled */
2024-09-09 08:57:42 +00:00
sh_tmu_start_stop_ch(ch, 0);
2024-09-09 08:52:07 +00:00
/* maximum timeout */
2024-09-09 08:57:42 +00:00
sh_tmu_write(ch, TCOR, 0xffffffff);
sh_tmu_write(ch, TCNT, 0xffffffff);
2024-09-09 08:52:07 +00:00
/* configure channel to parent clock / 4, irq off */
2024-09-09 08:57:42 +00:00
ch->rate = clk_get_rate(ch->tmu->clk) / 4;
sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
2024-09-09 08:52:07 +00:00
/* enable channel */
2024-09-09 08:57:42 +00:00
sh_tmu_start_stop_ch(ch, 1);
2024-09-09 08:52:07 +00:00
return 0;
}
2024-09-09 08:57:42 +00:00
static int sh_tmu_enable(struct sh_tmu_channel *ch)
{
if (ch->enable_count++ > 0)
return 0;
pm_runtime_get_sync(&ch->tmu->pdev->dev);
dev_pm_syscore_device(&ch->tmu->pdev->dev, true);
return __sh_tmu_enable(ch);
}
static void __sh_tmu_disable(struct sh_tmu_channel *ch)
2024-09-09 08:52:07 +00:00
{
/* disable channel */
2024-09-09 08:57:42 +00:00
sh_tmu_start_stop_ch(ch, 0);
2024-09-09 08:52:07 +00:00
/* disable interrupts in TMU block */
2024-09-09 08:57:42 +00:00
sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
2024-09-09 08:52:07 +00:00
/* stop clock */
2024-09-09 08:57:42 +00:00
clk_disable(ch->tmu->clk);
}
static void sh_tmu_disable(struct sh_tmu_channel *ch)
{
if (WARN_ON(ch->enable_count == 0))
return;
if (--ch->enable_count > 0)
return;
__sh_tmu_disable(ch);
dev_pm_syscore_device(&ch->tmu->pdev->dev, false);
pm_runtime_put(&ch->tmu->pdev->dev);
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta,
2024-09-09 08:52:07 +00:00
int periodic)
{
/* stop timer */
2024-09-09 08:57:42 +00:00
sh_tmu_start_stop_ch(ch, 0);
2024-09-09 08:52:07 +00:00
/* acknowledge interrupt */
2024-09-09 08:57:42 +00:00
sh_tmu_read(ch, TCR);
2024-09-09 08:52:07 +00:00
/* enable interrupt */
2024-09-09 08:57:42 +00:00
sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
2024-09-09 08:52:07 +00:00
/* reload delta value in case of periodic timer */
if (periodic)
2024-09-09 08:57:42 +00:00
sh_tmu_write(ch, TCOR, delta);
2024-09-09 08:52:07 +00:00
else
2024-09-09 08:57:42 +00:00
sh_tmu_write(ch, TCOR, 0xffffffff);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
sh_tmu_write(ch, TCNT, delta);
2024-09-09 08:52:07 +00:00
/* start timer */
2024-09-09 08:57:42 +00:00
sh_tmu_start_stop_ch(ch, 1);
2024-09-09 08:52:07 +00:00
}
static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
{
2024-09-09 08:57:42 +00:00
struct sh_tmu_channel *ch = dev_id;
2024-09-09 08:52:07 +00:00
/* disable or acknowledge interrupt */
2024-09-09 08:57:42 +00:00
if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT)
sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
2024-09-09 08:52:07 +00:00
else
2024-09-09 08:57:42 +00:00
sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
2024-09-09 08:52:07 +00:00
/* notify clockevent layer */
2024-09-09 08:57:42 +00:00
ch->ced.event_handler(&ch->ced);
2024-09-09 08:52:07 +00:00
return IRQ_HANDLED;
}
2024-09-09 08:57:42 +00:00
static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
return container_of(cs, struct sh_tmu_channel, cs);
2024-09-09 08:52:07 +00:00
}
static cycle_t sh_tmu_clocksource_read(struct clocksource *cs)
{
2024-09-09 08:57:42 +00:00
struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
return sh_tmu_read(ch, TCNT) ^ 0xffffffff;
2024-09-09 08:52:07 +00:00
}
static int sh_tmu_clocksource_enable(struct clocksource *cs)
{
2024-09-09 08:57:42 +00:00
struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
2024-09-09 08:52:07 +00:00
int ret;
2024-09-09 08:57:42 +00:00
if (WARN_ON(ch->cs_enabled))
return 0;
ret = sh_tmu_enable(ch);
if (!ret) {
__clocksource_updatefreq_hz(cs, ch->rate);
ch->cs_enabled = true;
}
2024-09-09 08:52:07 +00:00
return ret;
}
static void sh_tmu_clocksource_disable(struct clocksource *cs)
{
2024-09-09 08:57:42 +00:00
struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
if (WARN_ON(!ch->cs_enabled))
return;
sh_tmu_disable(ch);
ch->cs_enabled = false;
}
static void sh_tmu_clocksource_suspend(struct clocksource *cs)
{
struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
if (!ch->cs_enabled)
return;
if (--ch->enable_count == 0) {
__sh_tmu_disable(ch);
pm_genpd_syscore_poweroff(&ch->tmu->pdev->dev);
}
}
static void sh_tmu_clocksource_resume(struct clocksource *cs)
{
struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
if (!ch->cs_enabled)
return;
if (ch->enable_count++ == 0) {
pm_genpd_syscore_poweron(&ch->tmu->pdev->dev);
__sh_tmu_enable(ch);
}
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch,
const char *name)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
struct clocksource *cs = &ch->cs;
2024-09-09 08:52:07 +00:00
cs->name = name;
2024-09-09 08:57:42 +00:00
cs->rating = 200;
2024-09-09 08:52:07 +00:00
cs->read = sh_tmu_clocksource_read;
cs->enable = sh_tmu_clocksource_enable;
cs->disable = sh_tmu_clocksource_disable;
2024-09-09 08:57:42 +00:00
cs->suspend = sh_tmu_clocksource_suspend;
cs->resume = sh_tmu_clocksource_resume;
2024-09-09 08:52:07 +00:00
cs->mask = CLOCKSOURCE_MASK(32);
cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
2024-09-09 08:57:42 +00:00
dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n",
ch->index);
2024-09-09 08:52:07 +00:00
/* Register with dummy 1 Hz value, gets updated in ->enable() */
clocksource_register_hz(cs, 1);
return 0;
}
2024-09-09 08:57:42 +00:00
static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
return container_of(ced, struct sh_tmu_channel, ced);
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
struct clock_event_device *ced = &ch->ced;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
sh_tmu_enable(ch);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
clockevents_config(ced, ch->rate);
2024-09-09 08:52:07 +00:00
if (periodic) {
2024-09-09 08:57:42 +00:00
ch->periodic = (ch->rate + HZ/2) / HZ;
sh_tmu_set_next(ch, ch->periodic, 1);
2024-09-09 08:52:07 +00:00
}
}
static void sh_tmu_clock_event_mode(enum clock_event_mode mode,
struct clock_event_device *ced)
{
2024-09-09 08:57:42 +00:00
struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
2024-09-09 08:52:07 +00:00
int disabled = 0;
/* deal with old setting first */
switch (ced->mode) {
case CLOCK_EVT_MODE_PERIODIC:
case CLOCK_EVT_MODE_ONESHOT:
2024-09-09 08:57:42 +00:00
sh_tmu_disable(ch);
2024-09-09 08:52:07 +00:00
disabled = 1;
break;
default:
break;
}
switch (mode) {
case CLOCK_EVT_MODE_PERIODIC:
2024-09-09 08:57:42 +00:00
dev_info(&ch->tmu->pdev->dev,
"ch%u: used for periodic clock events\n", ch->index);
sh_tmu_clock_event_start(ch, 1);
2024-09-09 08:52:07 +00:00
break;
case CLOCK_EVT_MODE_ONESHOT:
2024-09-09 08:57:42 +00:00
dev_info(&ch->tmu->pdev->dev,
"ch%u: used for oneshot clock events\n", ch->index);
sh_tmu_clock_event_start(ch, 0);
2024-09-09 08:52:07 +00:00
break;
case CLOCK_EVT_MODE_UNUSED:
if (!disabled)
2024-09-09 08:57:42 +00:00
sh_tmu_disable(ch);
2024-09-09 08:52:07 +00:00
break;
case CLOCK_EVT_MODE_SHUTDOWN:
default:
break;
}
}
static int sh_tmu_clock_event_next(unsigned long delta,
struct clock_event_device *ced)
{
2024-09-09 08:57:42 +00:00
struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
2024-09-09 08:52:07 +00:00
BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
/* program new delta value */
2024-09-09 08:57:42 +00:00
sh_tmu_set_next(ch, delta, 0);
2024-09-09 08:52:07 +00:00
return 0;
}
2024-09-09 08:57:42 +00:00
static void sh_tmu_clock_event_suspend(struct clock_event_device *ced)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
pm_genpd_syscore_poweroff(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
static void sh_tmu_clock_event_resume(struct clock_event_device *ced)
{
pm_genpd_syscore_poweron(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
}
static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch,
const char *name)
{
struct clock_event_device *ced = &ch->ced;
int ret;
2024-09-09 08:52:07 +00:00
ced->name = name;
ced->features = CLOCK_EVT_FEAT_PERIODIC;
ced->features |= CLOCK_EVT_FEAT_ONESHOT;
2024-09-09 08:57:42 +00:00
ced->rating = 200;
2024-09-09 08:52:07 +00:00
ced->cpumask = cpumask_of(0);
ced->set_next_event = sh_tmu_clock_event_next;
ced->set_mode = sh_tmu_clock_event_mode;
2024-09-09 08:57:42 +00:00
ced->suspend = sh_tmu_clock_event_suspend;
ced->resume = sh_tmu_clock_event_resume;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n",
ch->index);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
clockevents_config_and_register(ced, 1, 0x300, 0xffffffff);
ret = request_irq(ch->irq, sh_tmu_interrupt,
IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
dev_name(&ch->tmu->pdev->dev), ch);
2024-09-09 08:52:07 +00:00
if (ret) {
2024-09-09 08:57:42 +00:00
dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n",
ch->index, ch->irq);
2024-09-09 08:52:07 +00:00
return;
}
}
2024-09-09 08:57:42 +00:00
static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name,
bool clockevent, bool clocksource)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
if (clockevent) {
ch->tmu->has_clockevent = true;
sh_tmu_register_clockevent(ch, name);
} else if (clocksource) {
ch->tmu->has_clocksource = true;
sh_tmu_register_clocksource(ch, name);
}
2024-09-09 08:52:07 +00:00
return 0;
}
2024-09-09 08:57:42 +00:00
static int sh_tmu_channel_setup(struct sh_tmu_channel *ch, unsigned int index,
bool clockevent, bool clocksource,
struct sh_tmu_device *tmu)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
/* Skip unused channels. */
if (!clockevent && !clocksource)
return 0;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
ch->tmu = tmu;
ch->index = index;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (tmu->model == SH_TMU_SH3)
ch->base = tmu->mapbase + 4 + ch->index * 12;
else
ch->base = tmu->mapbase + 8 + ch->index * 12;
ch->irq = platform_get_irq(tmu->pdev, index);
if (ch->irq < 0) {
dev_err(&tmu->pdev->dev, "ch%u: failed to get irq\n",
ch->index);
return ch->irq;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
ch->cs_enabled = false;
ch->enable_count = 0;
return sh_tmu_register(ch, dev_name(&tmu->pdev->dev),
clockevent, clocksource);
}
static int sh_tmu_map_memory(struct sh_tmu_device *tmu)
{
struct resource *res;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0);
2024-09-09 08:52:07 +00:00
if (!res) {
2024-09-09 08:57:42 +00:00
dev_err(&tmu->pdev->dev, "failed to get I/O memory\n");
return -ENXIO;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
tmu->mapbase = ioremap_nocache(res->start, resource_size(res));
if (tmu->mapbase == NULL)
return -ENXIO;
return 0;
}
static int sh_tmu_parse_dt(struct sh_tmu_device *tmu)
{
struct device_node *np = tmu->pdev->dev.of_node;
tmu->model = SH_TMU;
tmu->num_channels = 3;
of_property_read_u32(np, "#renesas,channels", &tmu->num_channels);
if (tmu->num_channels != 2 && tmu->num_channels != 3) {
dev_err(&tmu->pdev->dev, "invalid number of channels %u\n",
tmu->num_channels);
return -EINVAL;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
return 0;
}
static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev)
{
unsigned int i;
int ret;
tmu->pdev = pdev;
raw_spin_lock_init(&tmu->lock);
if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
ret = sh_tmu_parse_dt(tmu);
if (ret < 0)
return ret;
} else if (pdev->dev.platform_data) {
const struct platform_device_id *id = pdev->id_entry;
struct sh_timer_config *cfg = pdev->dev.platform_data;
tmu->model = id->driver_data;
tmu->num_channels = hweight8(cfg->channels_mask);
} else {
dev_err(&tmu->pdev->dev, "missing platform data\n");
return -ENXIO;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
/* Get hold of clock. */
tmu->clk = clk_get(&tmu->pdev->dev, "fck");
if (IS_ERR(tmu->clk)) {
dev_err(&tmu->pdev->dev, "cannot get clock\n");
return PTR_ERR(tmu->clk);
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
ret = clk_prepare(tmu->clk);
if (ret < 0)
goto err_clk_put;
/* Map the memory resource. */
ret = sh_tmu_map_memory(tmu);
if (ret < 0) {
dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n");
goto err_clk_unprepare;
}
/* Allocate and setup the channels. */
tmu->channels = kzalloc(sizeof(*tmu->channels) * tmu->num_channels,
GFP_KERNEL);
if (tmu->channels == NULL) {
ret = -ENOMEM;
goto err_unmap;
}
/*
* Use the first channel as a clock event device and the second channel
* as a clock source.
*/
for (i = 0; i < tmu->num_channels; ++i) {
ret = sh_tmu_channel_setup(&tmu->channels[i], i,
i == 0, i == 1, tmu);
if (ret < 0)
goto err_unmap;
}
platform_set_drvdata(pdev, tmu);
return 0;
err_unmap:
kfree(tmu->channels);
iounmap(tmu->mapbase);
err_clk_unprepare:
clk_unprepare(tmu->clk);
err_clk_put:
clk_put(tmu->clk);
2024-09-09 08:52:07 +00:00
return ret;
}
2024-09-09 08:57:42 +00:00
static int sh_tmu_probe(struct platform_device *pdev)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
struct sh_tmu_device *tmu = platform_get_drvdata(pdev);
2024-09-09 08:52:07 +00:00
int ret;
2024-09-09 08:57:42 +00:00
if (!is_early_platform_device(pdev)) {
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (tmu) {
2024-09-09 08:52:07 +00:00
dev_info(&pdev->dev, "kept as earlytimer\n");
2024-09-09 08:57:42 +00:00
goto out;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
tmu = kzalloc(sizeof(*tmu), GFP_KERNEL);
if (tmu == NULL)
2024-09-09 08:52:07 +00:00
return -ENOMEM;
2024-09-09 08:57:42 +00:00
ret = sh_tmu_setup(tmu, pdev);
2024-09-09 08:52:07 +00:00
if (ret) {
2024-09-09 08:57:42 +00:00
kfree(tmu);
pm_runtime_idle(&pdev->dev);
return ret;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
if (is_early_platform_device(pdev))
return 0;
out:
if (tmu->has_clockevent || tmu->has_clocksource)
pm_runtime_irq_safe(&pdev->dev);
else
pm_runtime_idle(&pdev->dev);
return 0;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
static int sh_tmu_remove(struct platform_device *pdev)
2024-09-09 08:52:07 +00:00
{
return -EBUSY; /* cannot unregister clockevent and clocksource */
}
2024-09-09 08:57:42 +00:00
static const struct platform_device_id sh_tmu_id_table[] = {
{ "sh-tmu", SH_TMU },
{ "sh-tmu-sh3", SH_TMU_SH3 },
{ }
};
MODULE_DEVICE_TABLE(platform, sh_tmu_id_table);
static const struct of_device_id sh_tmu_of_table[] __maybe_unused = {
{ .compatible = "renesas,tmu" },
{ }
};
MODULE_DEVICE_TABLE(of, sh_tmu_of_table);
2024-09-09 08:52:07 +00:00
static struct platform_driver sh_tmu_device_driver = {
.probe = sh_tmu_probe,
2024-09-09 08:57:42 +00:00
.remove = sh_tmu_remove,
2024-09-09 08:52:07 +00:00
.driver = {
.name = "sh_tmu",
2024-09-09 08:57:42 +00:00
.of_match_table = of_match_ptr(sh_tmu_of_table),
},
.id_table = sh_tmu_id_table,
2024-09-09 08:52:07 +00:00
};
static int __init sh_tmu_init(void)
{
return platform_driver_register(&sh_tmu_device_driver);
}
static void __exit sh_tmu_exit(void)
{
platform_driver_unregister(&sh_tmu_device_driver);
}
early_platform_init("earlytimer", &sh_tmu_device_driver);
2024-09-09 08:57:42 +00:00
subsys_initcall(sh_tmu_init);
2024-09-09 08:52:07 +00:00
module_exit(sh_tmu_exit);
MODULE_AUTHOR("Magnus Damm");
MODULE_DESCRIPTION("SuperH TMU Timer Driver");
MODULE_LICENSE("GPL v2");