M7350/bootable/bootloader/lk/lib/openssl/crypto/rc4/asm/rc4-586.pl

271 lines
7.5 KiB
Perl
Raw Permalink Normal View History

2024-09-09 08:52:07 +00:00
#!/usr/bin/env perl
# ====================================================================
# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
# At some point it became apparent that the original SSLeay RC4
# assembler implementation performs suboptimally on latest IA-32
# microarchitectures. After re-tuning performance has changed as
# following:
#
# Pentium -10%
# Pentium III +12%
# AMD +50%(*)
# P4 +250%(**)
#
# (*) This number is actually a trade-off:-) It's possible to
# achieve +72%, but at the cost of -48% off PIII performance.
# In other words code performing further 13% faster on AMD
# would perform almost 2 times slower on Intel PIII...
# For reference! This code delivers ~80% of rc4-amd64.pl
# performance on the same Opteron machine.
# (**) This number requires compressed key schedule set up by
# RC4_set_key [see commentary below for further details].
#
# <appro@fy.chalmers.se>
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
push(@INC,"${dir}","${dir}../../perlasm");
require "x86asm.pl";
&asm_init($ARGV[0],"rc4-586.pl");
$xx="eax";
$yy="ebx";
$tx="ecx";
$ty="edx";
$inp="esi";
$out="ebp";
$dat="edi";
sub RC4_loop {
my $i=shift;
my $func = ($i==0)?*mov:*or;
&add (&LB($yy),&LB($tx));
&mov ($ty,&DWP(0,$dat,$yy,4));
&mov (&DWP(0,$dat,$yy,4),$tx);
&mov (&DWP(0,$dat,$xx,4),$ty);
&add ($ty,$tx);
&inc (&LB($xx));
&and ($ty,0xff);
&ror ($out,8) if ($i!=0);
if ($i<3) {
&mov ($tx,&DWP(0,$dat,$xx,4));
} else {
&mov ($tx,&wparam(3)); # reload [re-biased] out
}
&$func ($out,&DWP(0,$dat,$ty,4));
}
# void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out);
&function_begin("RC4");
&mov ($dat,&wparam(0)); # load key schedule pointer
&mov ($ty, &wparam(1)); # load len
&mov ($inp,&wparam(2)); # load inp
&mov ($out,&wparam(3)); # load out
&xor ($xx,$xx); # avoid partial register stalls
&xor ($yy,$yy);
&cmp ($ty,0); # safety net
&je (&label("abort"));
&mov (&LB($xx),&BP(0,$dat)); # load key->x
&mov (&LB($yy),&BP(4,$dat)); # load key->y
&add ($dat,8);
&lea ($tx,&DWP(0,$inp,$ty));
&sub ($out,$inp); # re-bias out
&mov (&wparam(1),$tx); # save input+len
&inc (&LB($xx));
# detect compressed key schedule...
&cmp (&DWP(256,$dat),-1);
&je (&label("RC4_CHAR"));
&mov ($tx,&DWP(0,$dat,$xx,4));
&and ($ty,-4); # how many 4-byte chunks?
&jz (&label("loop1"));
&lea ($ty,&DWP(-4,$inp,$ty));
&mov (&wparam(2),$ty); # save input+(len/4)*4-4
&mov (&wparam(3),$out); # $out as accumulator in this loop
&set_label("loop4",16);
for ($i=0;$i<4;$i++) { RC4_loop($i); }
&ror ($out,8);
&xor ($out,&DWP(0,$inp));
&cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4
&mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here
&lea ($inp,&DWP(4,$inp));
&mov ($tx,&DWP(0,$dat,$xx,4));
&jb (&label("loop4"));
&cmp ($inp,&wparam(1)); # compare to input+len
&je (&label("done"));
&mov ($out,&wparam(3)); # restore $out
&set_label("loop1",16);
&add (&LB($yy),&LB($tx));
&mov ($ty,&DWP(0,$dat,$yy,4));
&mov (&DWP(0,$dat,$yy,4),$tx);
&mov (&DWP(0,$dat,$xx,4),$ty);
&add ($ty,$tx);
&inc (&LB($xx));
&and ($ty,0xff);
&mov ($ty,&DWP(0,$dat,$ty,4));
&xor (&LB($ty),&BP(0,$inp));
&lea ($inp,&DWP(1,$inp));
&mov ($tx,&DWP(0,$dat,$xx,4));
&cmp ($inp,&wparam(1)); # compare to input+len
&mov (&BP(-1,$out,$inp),&LB($ty));
&jb (&label("loop1"));
&jmp (&label("done"));
# this is essentially Intel P4 specific codepath...
&set_label("RC4_CHAR",16);
&movz ($tx,&BP(0,$dat,$xx));
# strangely enough unrolled loop performs over 20% slower...
&set_label("cloop1");
&add (&LB($yy),&LB($tx));
&movz ($ty,&BP(0,$dat,$yy));
&mov (&BP(0,$dat,$yy),&LB($tx));
&mov (&BP(0,$dat,$xx),&LB($ty));
&add (&LB($ty),&LB($tx));
&movz ($ty,&BP(0,$dat,$ty));
&add (&LB($xx),1);
&xor (&LB($ty),&BP(0,$inp));
&lea ($inp,&DWP(1,$inp));
&movz ($tx,&BP(0,$dat,$xx));
&cmp ($inp,&wparam(1));
&mov (&BP(-1,$out,$inp),&LB($ty));
&jb (&label("cloop1"));
&set_label("done");
&dec (&LB($xx));
&mov (&BP(-4,$dat),&LB($yy)); # save key->y
&mov (&BP(-8,$dat),&LB($xx)); # save key->x
&set_label("abort");
&function_end("RC4");
########################################################################
$inp="esi";
$out="edi";
$idi="ebp";
$ido="ecx";
$idx="edx";
&external_label("OPENSSL_ia32cap_P");
# void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data);
&function_begin("RC4_set_key");
&mov ($out,&wparam(0)); # load key
&mov ($idi,&wparam(1)); # load len
&mov ($inp,&wparam(2)); # load data
&picmeup($idx,"OPENSSL_ia32cap_P");
&lea ($out,&DWP(2*4,$out)); # &key->data
&lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end
&neg ($idi);
&xor ("eax","eax");
&mov (&DWP(-4,$out),$idi); # borrow key->y
&bt (&DWP(0,$idx),20); # check for bit#20
&jc (&label("c1stloop"));
&set_label("w1stloop",16);
&mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i;
&add (&LB("eax"),1); # i++;
&jnc (&label("w1stloop"));
&xor ($ido,$ido);
&xor ($idx,$idx);
&set_label("w2ndloop",16);
&mov ("eax",&DWP(0,$out,$ido,4));
&add (&LB($idx),&BP(0,$inp,$idi));
&add (&LB($idx),&LB("eax"));
&add ($idi,1);
&mov ("ebx",&DWP(0,$out,$idx,4));
&jnz (&label("wnowrap"));
&mov ($idi,&DWP(-4,$out));
&set_label("wnowrap");
&mov (&DWP(0,$out,$idx,4),"eax");
&mov (&DWP(0,$out,$ido,4),"ebx");
&add (&LB($ido),1);
&jnc (&label("w2ndloop"));
&jmp (&label("exit"));
# Unlike all other x86 [and x86_64] implementations, Intel P4 core
# [including EM64T] was found to perform poorly with above "32-bit" key
# schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded
# assembler turned out to be 3.5x if re-coded for compressed 8-bit one,
# a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit
# schedule for x86[_64], because non-P4 implementations suffer from
# significant performance losses then, e.g. PIII exhibits >2x
# deterioration, and so does Opteron. In order to assure optimal
# all-round performance, we detect P4 at run-time and set up compressed
# key schedule, which is recognized by RC4 procedure.
&set_label("c1stloop",16);
&mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i;
&add (&LB("eax"),1); # i++;
&jnc (&label("c1stloop"));
&xor ($ido,$ido);
&xor ($idx,$idx);
&xor ("ebx","ebx");
&set_label("c2ndloop",16);
&mov (&LB("eax"),&BP(0,$out,$ido));
&add (&LB($idx),&BP(0,$inp,$idi));
&add (&LB($idx),&LB("eax"));
&add ($idi,1);
&mov (&LB("ebx"),&BP(0,$out,$idx));
&jnz (&label("cnowrap"));
&mov ($idi,&DWP(-4,$out));
&set_label("cnowrap");
&mov (&BP(0,$out,$idx),&LB("eax"));
&mov (&BP(0,$out,$ido),&LB("ebx"));
&add (&LB($ido),1);
&jnc (&label("c2ndloop"));
&mov (&DWP(256,$out),-1); # mark schedule as compressed
&set_label("exit");
&xor ("eax","eax");
&mov (&DWP(-8,$out),"eax"); # key->x=0;
&mov (&DWP(-4,$out),"eax"); # key->y=0;
&function_end("RC4_set_key");
# const char *RC4_options(void);
&function_begin_B("RC4_options");
&call (&label("pic_point"));
&set_label("pic_point");
&blindpop("eax");
&lea ("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax"));
&picmeup("edx","OPENSSL_ia32cap_P");
&bt (&DWP(0,"edx"),20);
&jnc (&label("skip"));
&add ("eax",12);
&set_label("skip");
&ret ();
&set_label("opts",64);
&asciz ("rc4(4x,int)");
&asciz ("rc4(1x,char)");
&asciz ("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>");
&align (64);
&function_end_B("RC4_options");
&asm_finish();