M7350/bootable/bootloader/lk/lib/openssl/crypto/bn/asm/ppc-mont.pl

324 lines
7.2 KiB
Perl
Raw Permalink Normal View History

2024-09-09 08:52:07 +00:00
#!/usr/bin/env perl
# ====================================================================
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
# April 2006
# "Teaser" Montgomery multiplication module for PowerPC. It's possible
# to gain a bit more by modulo-scheduling outer loop, then dedicated
# squaring procedure should give further 20% and code can be adapted
# for 32-bit application running on 64-bit CPU. As for the latter.
# It won't be able to achieve "native" 64-bit performance, because in
# 32-bit application context every addc instruction will have to be
# expanded as addc, twice right shift by 32 and finally adde, etc.
# So far RSA *sign* performance improvement over pre-bn_mul_mont asm
# for 64-bit application running on PPC970/G5 is:
#
# 512-bit +65%
# 1024-bit +35%
# 2048-bit +18%
# 4096-bit +4%
$flavour = shift;
if ($flavour =~ /32/) {
$BITS= 32;
$BNSZ= $BITS/8;
$SIZE_T=4;
$RZONE= 224;
$FRAME= $SIZE_T*16;
$LD= "lwz"; # load
$LDU= "lwzu"; # load and update
$LDX= "lwzx"; # load indexed
$ST= "stw"; # store
$STU= "stwu"; # store and update
$STX= "stwx"; # store indexed
$STUX= "stwux"; # store indexed and update
$UMULL= "mullw"; # unsigned multiply low
$UMULH= "mulhwu"; # unsigned multiply high
$UCMP= "cmplw"; # unsigned compare
$SHRI= "srwi"; # unsigned shift right by immediate
$PUSH= $ST;
$POP= $LD;
} elsif ($flavour =~ /64/) {
$BITS= 64;
$BNSZ= $BITS/8;
$SIZE_T=8;
$RZONE= 288;
$FRAME= $SIZE_T*16;
# same as above, but 64-bit mnemonics...
$LD= "ld"; # load
$LDU= "ldu"; # load and update
$LDX= "ldx"; # load indexed
$ST= "std"; # store
$STU= "stdu"; # store and update
$STX= "stdx"; # store indexed
$STUX= "stdux"; # store indexed and update
$UMULL= "mulld"; # unsigned multiply low
$UMULH= "mulhdu"; # unsigned multiply high
$UCMP= "cmpld"; # unsigned compare
$SHRI= "srdi"; # unsigned shift right by immediate
$PUSH= $ST;
$POP= $LD;
} else { die "nonsense $flavour"; }
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or
die "can't locate ppc-xlate.pl";
open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!";
$sp="r1";
$toc="r2";
$rp="r3"; $ovf="r3";
$ap="r4";
$bp="r5";
$np="r6";
$n0="r7";
$num="r8";
$rp="r9"; # $rp is reassigned
$aj="r10";
$nj="r11";
$tj="r12";
# non-volatile registers
$i="r14";
$j="r15";
$tp="r16";
$m0="r17";
$m1="r18";
$lo0="r19";
$hi0="r20";
$lo1="r21";
$hi1="r22";
$alo="r23";
$ahi="r24";
$nlo="r25";
#
$nhi="r0";
$code=<<___;
.machine "any"
.text
.globl .bn_mul_mont
.align 4
.bn_mul_mont:
cmpwi $num,4
mr $rp,r3 ; $rp is reassigned
li r3,0
bltlr
slwi $num,$num,`log($BNSZ)/log(2)`
li $tj,-4096
addi $ovf,$num,`$FRAME+$RZONE`
subf $ovf,$ovf,$sp ; $sp-$ovf
and $ovf,$ovf,$tj ; minimize TLB usage
subf $ovf,$sp,$ovf ; $ovf-$sp
srwi $num,$num,`log($BNSZ)/log(2)`
$STUX $sp,$sp,$ovf
$PUSH r14,`4*$SIZE_T`($sp)
$PUSH r15,`5*$SIZE_T`($sp)
$PUSH r16,`6*$SIZE_T`($sp)
$PUSH r17,`7*$SIZE_T`($sp)
$PUSH r18,`8*$SIZE_T`($sp)
$PUSH r19,`9*$SIZE_T`($sp)
$PUSH r20,`10*$SIZE_T`($sp)
$PUSH r21,`11*$SIZE_T`($sp)
$PUSH r22,`12*$SIZE_T`($sp)
$PUSH r23,`13*$SIZE_T`($sp)
$PUSH r24,`14*$SIZE_T`($sp)
$PUSH r25,`15*$SIZE_T`($sp)
$LD $n0,0($n0) ; pull n0[0] value
addi $num,$num,-2 ; adjust $num for counter register
$LD $m0,0($bp) ; m0=bp[0]
$LD $aj,0($ap) ; ap[0]
addi $tp,$sp,$FRAME
$UMULL $lo0,$aj,$m0 ; ap[0]*bp[0]
$UMULH $hi0,$aj,$m0
$LD $aj,$BNSZ($ap) ; ap[1]
$LD $nj,0($np) ; np[0]
$UMULL $m1,$lo0,$n0 ; "tp[0]"*n0
$UMULL $alo,$aj,$m0 ; ap[1]*bp[0]
$UMULH $ahi,$aj,$m0
$UMULL $lo1,$nj,$m1 ; np[0]*m1
$UMULH $hi1,$nj,$m1
$LD $nj,$BNSZ($np) ; np[1]
addc $lo1,$lo1,$lo0
addze $hi1,$hi1
$UMULL $nlo,$nj,$m1 ; np[1]*m1
$UMULH $nhi,$nj,$m1
mtctr $num
li $j,`2*$BNSZ`
.align 4
L1st:
$LDX $aj,$ap,$j ; ap[j]
addc $lo0,$alo,$hi0
$LDX $nj,$np,$j ; np[j]
addze $hi0,$ahi
$UMULL $alo,$aj,$m0 ; ap[j]*bp[0]
addc $lo1,$nlo,$hi1
$UMULH $ahi,$aj,$m0
addze $hi1,$nhi
$UMULL $nlo,$nj,$m1 ; np[j]*m1
addc $lo1,$lo1,$lo0 ; np[j]*m1+ap[j]*bp[0]
$UMULH $nhi,$nj,$m1
addze $hi1,$hi1
$ST $lo1,0($tp) ; tp[j-1]
addi $j,$j,$BNSZ ; j++
addi $tp,$tp,$BNSZ ; tp++
bdnz- L1st
;L1st
addc $lo0,$alo,$hi0
addze $hi0,$ahi
addc $lo1,$nlo,$hi1
addze $hi1,$nhi
addc $lo1,$lo1,$lo0 ; np[j]*m1+ap[j]*bp[0]
addze $hi1,$hi1
$ST $lo1,0($tp) ; tp[j-1]
li $ovf,0
addc $hi1,$hi1,$hi0
addze $ovf,$ovf ; upmost overflow bit
$ST $hi1,$BNSZ($tp)
li $i,$BNSZ
.align 4
Louter:
$LDX $m0,$bp,$i ; m0=bp[i]
$LD $aj,0($ap) ; ap[0]
addi $tp,$sp,$FRAME
$LD $tj,$FRAME($sp) ; tp[0]
$UMULL $lo0,$aj,$m0 ; ap[0]*bp[i]
$UMULH $hi0,$aj,$m0
$LD $aj,$BNSZ($ap) ; ap[1]
$LD $nj,0($np) ; np[0]
addc $lo0,$lo0,$tj ; ap[0]*bp[i]+tp[0]
$UMULL $alo,$aj,$m0 ; ap[j]*bp[i]
addze $hi0,$hi0
$UMULL $m1,$lo0,$n0 ; tp[0]*n0
$UMULH $ahi,$aj,$m0
$UMULL $lo1,$nj,$m1 ; np[0]*m1
$UMULH $hi1,$nj,$m1
$LD $nj,$BNSZ($np) ; np[1]
addc $lo1,$lo1,$lo0
$UMULL $nlo,$nj,$m1 ; np[1]*m1
addze $hi1,$hi1
$UMULH $nhi,$nj,$m1
mtctr $num
li $j,`2*$BNSZ`
.align 4
Linner:
$LDX $aj,$ap,$j ; ap[j]
addc $lo0,$alo,$hi0
$LD $tj,$BNSZ($tp) ; tp[j]
addze $hi0,$ahi
$LDX $nj,$np,$j ; np[j]
addc $lo1,$nlo,$hi1
$UMULL $alo,$aj,$m0 ; ap[j]*bp[i]
addze $hi1,$nhi
$UMULH $ahi,$aj,$m0
addc $lo0,$lo0,$tj ; ap[j]*bp[i]+tp[j]
$UMULL $nlo,$nj,$m1 ; np[j]*m1
addze $hi0,$hi0
$UMULH $nhi,$nj,$m1
addc $lo1,$lo1,$lo0 ; np[j]*m1+ap[j]*bp[i]+tp[j]
addi $j,$j,$BNSZ ; j++
addze $hi1,$hi1
$ST $lo1,0($tp) ; tp[j-1]
addi $tp,$tp,$BNSZ ; tp++
bdnz- Linner
;Linner
$LD $tj,$BNSZ($tp) ; tp[j]
addc $lo0,$alo,$hi0
addze $hi0,$ahi
addc $lo0,$lo0,$tj ; ap[j]*bp[i]+tp[j]
addze $hi0,$hi0
addc $lo1,$nlo,$hi1
addze $hi1,$nhi
addc $lo1,$lo1,$lo0 ; np[j]*m1+ap[j]*bp[i]+tp[j]
addze $hi1,$hi1
$ST $lo1,0($tp) ; tp[j-1]
addic $ovf,$ovf,-1 ; move upmost overflow to XER[CA]
li $ovf,0
adde $hi1,$hi1,$hi0
addze $ovf,$ovf
$ST $hi1,$BNSZ($tp)
;
slwi $tj,$num,`log($BNSZ)/log(2)`
$UCMP $i,$tj
addi $i,$i,$BNSZ
ble- Louter
addi $num,$num,2 ; restore $num
subfc $j,$j,$j ; j=0 and "clear" XER[CA]
addi $tp,$sp,$FRAME
mtctr $num
.align 4
Lsub: $LDX $tj,$tp,$j
$LDX $nj,$np,$j
subfe $aj,$nj,$tj ; tp[j]-np[j]
$STX $aj,$rp,$j
addi $j,$j,$BNSZ
bdnz- Lsub
li $j,0
mtctr $num
subfe $ovf,$j,$ovf ; handle upmost overflow bit
and $ap,$tp,$ovf
andc $np,$rp,$ovf
or $ap,$ap,$np ; ap=borrow?tp:rp
.align 4
Lcopy: ; copy or in-place refresh
$LDX $tj,$ap,$j
$STX $tj,$rp,$j
$STX $j,$tp,$j ; zap at once
addi $j,$j,$BNSZ
bdnz- Lcopy
$POP r14,`4*$SIZE_T`($sp)
$POP r15,`5*$SIZE_T`($sp)
$POP r16,`6*$SIZE_T`($sp)
$POP r17,`7*$SIZE_T`($sp)
$POP r18,`8*$SIZE_T`($sp)
$POP r19,`9*$SIZE_T`($sp)
$POP r20,`10*$SIZE_T`($sp)
$POP r21,`11*$SIZE_T`($sp)
$POP r22,`12*$SIZE_T`($sp)
$POP r23,`13*$SIZE_T`($sp)
$POP r24,`14*$SIZE_T`($sp)
$POP r25,`15*$SIZE_T`($sp)
$POP $sp,0($sp)
li r3,1
blr
.long 0
.asciz "Montgomery Multiplication for PPC, CRYPTOGAMS by <appro\@fy.chalmers.se>"
___
$code =~ s/\`([^\`]*)\`/eval $1/gem;
print $code;
close STDOUT;