Files
seven-segment-clock/src/fooclock.ino
2025-09-11 19:29:08 +02:00

733 lines
20 KiB
C++

#include <TimeLib.h>
#include <Ethernet.h>
#include <SPI.h>
#include <TimerOne.h>
#include <PubSubClient.h>
// ---------------- MQTT Settings ------------------
const char *mqtt_server = "mqtt.chaospott.de"; // <<< anpassen!
const int mqtt_port = 1883;
const char *mqtt_client = "fooclock";
// Eindeutige ID für die Uhr in Home Assistant
const char *device_id = "fooclock_01";
// Topics für Home Assistant
const char *mqtt_command_topic = "fooclock/display/set"; // Topic zum Senden von Befehlen (ON/OFF)
const char *mqtt_state_topic = "fooclock/display/state"; // Topic zum Melden des Status (ON/OFF)
const char *mqtt_discovery_topic = "homeassistant/switch/fooclock/display/config"; // HA Auto-Discovery Topic
EthernetClient ethClient;
PubSubClient client(ethClient);
bool displayEnabled = true; // Steuerflag für Anzeige
// Forward declaration der neuen Funktionen
void publishState();
void publishDiscoveryMessage();
// -------------------------------------------------
#define _A 0
#define _B 1
#define _C 2
#define _D 3
#define _E 4
#define _F 5
#define _G 6
#define _H 7
#define _I 8
#define _J 9
#define _K 10
#define _L 11
#define _M 12
#define _N 13
#define _O 14
#define _P 15
#define _Q 16
#define _R 17
#define _S 18
#define _T 19
#define _U 20
#define _V 21
#define _W 22
#define _X 23
#define _Y 24
#define _Z 25
#define UP 1
#define DOWN 2
#define light_lvl_standard 60
#define light_lvl_risen 255
// ---------------------------------- Definition of Global Variables -------------------------- //
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
// NTP Servers:
IPAddress timeServer(132, 163, 96, 1); // time-a.timefreq.bldrdoc.gov
// IPAddress timeServer(132, 163, 96, 2); // time-b.timefreq.bldrdoc.gov
// IPAddress timeServer(132, 163, 96, 3); // time-c.timefreq.bldrdoc.gov
//const int timeZone = 1; // Central European Time
const int timeZone = 2; // Central European Time (summertime)
//const int timeZone = -5; // Eastern Standard Time (USA)
//const int timeZone = -4; // Eastern Daylight Time (USA)
//const int timeZone = -8; // Pacific Standard Time (USA)
//const int timeZone = -7; // Pacific Daylight Time (USA)
time_t cur_time = 0;
time_t alarm_goal = 0;
bool update_done = false;
bool second_changed = false;
bool init_done = false;
bool transition_active = false;
bool swipe_active = false;
bool shrink_active = false;
int cur_update = 0;
int shift_state = 0;
int update_counter = 0;
int spinner_pos = 0;
int animation = 0;
EthernetUDP Udp;
EthernetUDP AlarmClock;
unsigned int alarmClockPort = 123; // local port to listen for custom AlarmClock packets
unsigned int localPort = 8888; // local port to listen for UDP packets
int OutputEnable = 3;
//Pin connected to ST_CP of 74HC595
int latchPin = 4;
//Pin connected to SH_CP of 74HC595
int clockPin = 2;
//Pin connected to DS of 74HC595
int dataPin = 5;
// 4
// /======\
// || ||
// 8 || || 2
// || 16 ||
// >======<
// || ||
// 128 || || 32
// || 64 ||
// \======/ O 1
int duration = 10;
int digits[10] = {
238, // 0 0xEE
34, // 1 0x22
214, // 2 0xD6
118, // 3 0x76
58, // 4 0x3A
124, // 5 0x7C
252, // 6 0xFC
38, // 7 0x26
254, // 8 0xFE
126 // 9 0x7E
};
int letter[26] = {
191, // A
248, // b
204, // C
242, // d
220, // E
156, // F
126, // g
184, // h
32, // i
230, // J
190, // k
200, // L
176, // m
176, // n
240, // o
158, // P
238, // Q
144, // r
124, // S
216, // t
224, // u
224, // v
26, // w
186, // X
58, // y
214, // Z
};
int frame[6] = {
0, letter[_T], letter[_R], letter[_A], letter[_T], letter[_S] // Display "Start" (write from right to left into the array)
};
int today[7] = {
184, 220, 200, 200, 240, 0, 0 // Display "Hello"
};
// ---------------- MQTT Callback ------------------
void mqttCallback(char *topic, byte *payload, unsigned int length) {
payload[length] = '\0'; // String terminieren
String message = String((char *) payload);
Serial.print("Nachricht empfangen [");
Serial.print(topic);
Serial.print("] ");
Serial.println(message);
if (String(topic) == mqtt_command_topic) {
if (message == "ON") {
displayEnabled = true;
Serial.println("MQTT: Display eingeschaltet");
} else if (message == "OFF") {
displayEnabled = false;
Serial.println("MQTT: Display ausgeschaltet");
}
// Sende den neuen Status sofort zurück
publishState();
}
}
// ---------------- MQTT Publish State ------------------
void publishState() {
if (displayEnabled) {
client.publish(mqtt_state_topic, "ON", true); // true = retain message
} else {
client.publish(mqtt_state_topic, "OFF", true); // true = retain message
}
}
// ---------------- MQTT Publish Home Assistant Discovery Message ------------------
void publishDiscoveryMessage() {
// Use a fixed-size buffer to create the JSON payload. This is much more
// memory-efficient than using the Arduino String class for concatenation.
char discoveryPayload[400];
// Create the JSON payload using snprintf to prevent buffer overflows
snprintf(discoveryPayload, sizeof(discoveryPayload),
"{"
"\"name\":\"FooClock Display\","
"\"unique_id\":\"%s_display\","
"\"cmd_t\":\"%s\","
"\"stat_t\":\"%s\","
"\"pl_on\":\"ON\","
"\"pl_off\":\"OFF\","
"\"icon\":\"mdi:clock-digital\","
"\"device\":{"
"\"identifiers\":[\"%s\"],"
"\"name\":\"FooClock\","
"\"manufacturer\":\"DIY\""
"}"
"}",
device_id,
mqtt_command_topic,
mqtt_state_topic,
device_id
);
// Nachricht mit Retain-Flag publishen, damit HA sie auch nach einem Neustart findet
client.publish(mqtt_discovery_topic, discoveryPayload, true);
}
// ---------------- MQTT Reconnect ------------------
void reconnect() {
while (!client.connected()) {
Serial.print("MQTT Verbindung herstellen...");
if (client.connect(mqtt_client)) {
Serial.println("verbunden.");
// Sobald verbunden, Befehls-Topic abonnieren
client.subscribe(mqtt_command_topic);
// Discovery-Nachricht und initialen Status senden
publishDiscoveryMessage();
publishState();
} else {
Serial.print("Fehler, rc=");
Serial.print(client.state());
Serial.println(" -> neuer Versuch in 5s");
delay(5000);
}
}
}
// ----------------------------------- Setup Code ---------------------------------------------- //
void setup() {
pinMode(OutputEnable, OUTPUT);
pinMode(latchPin, OUTPUT);
pinMode(clockPin, OUTPUT);
pinMode(dataPin, OUTPUT);
analogWrite(OutputEnable,light_lvl_standard);
Timer1.initialize(1000); // initialize timer1, and set a 1 millisecond period
Timer1.attachInterrupt(updateDisplay); // attaches callback() as a timer overflow interrupt
Serial.begin(9600);
while (Ethernet.begin(mac) == 0) {
delay(5000); // Wait for a valid IP-Address
}
Udp.begin(localPort);
setSyncProvider(getNtpTime);
update_counter = 0;
init_done = true;
// <<< MQTT init >>>
client.setServer(mqtt_server, mqtt_port);
client.setCallback(mqttCallback);
}
// -------------------------------------- Main Loop ------------------------------------------------- //
void loop() {
// <<< MQTT >>>
if (!client.connected()) {
reconnect();
}
client.loop();
time_t timestamp = now();
// Sync blinking with second change
if (cur_time != timestamp && !second_changed) {
update_counter = 0;
cur_time = timestamp;
second_changed = true;
}
int intervalpos = timestamp % 70;
if (intervalpos == 0) {
update_done = false;
}
if (intervalpos < 10) {
switch (animation) {
case 0: transition(today);
break;
case 1: combine(today);
break;
case 2: swipe(UP, today);
break;
case 3: swipe(DOWN, today);
break;
case 4: shrink(UP, today);
break;
case 5: shrink(DOWN, today);
break;
default: displayDate(timestamp);
break;
}
// shrink(DOWN,today);
// transition(today);
// combine(today);
// swipe(UP,today);
// displayDate(timestamp);
} else if (intervalpos > 20 && intervalpos < 30) {
displayBinaryTime(timestamp);
} else {
displayTime(timestamp);
}
if (intervalpos == 50 && !update_done) {
update_done = true;
transition_active = false;
swipe_active = false;
shrink_active = false;
shift_state = 0;
updateDate(timestamp);
animation = (int) (rand() % 6);
}
// Blinkenfoo - comment to remove pulsating light
if (update_counter < (light_lvl_risen - light_lvl_standard) && timestamp % 600 == 0) {
dim(UP,light_lvl_standard,light_lvl_risen);
}
if (update_counter > (1000 - (light_lvl_risen - light_lvl_standard)) && timestamp % 600 == 0) {
dim(DOWN,light_lvl_standard,light_lvl_risen);
}
if (update_counter == 900) {
second_changed = true;
}
}
// ---------------------- Interrupt Handler (Timer1) ------------------- //
void updateDisplay() {
if (!displayEnabled) {
// Anzeige aus: alles dunkel
digitalWrite(latchPin, LOW);
for (int digitCount = 5; digitCount >= 0; digitCount--) {
shiftOut(dataPin, clockPin, MSBFIRST, 0);
}
digitalWrite(latchPin, HIGH);
return;
}
// take the latchPin low so
// the LEDs don't flicker while you're sending in bits:
digitalWrite(latchPin, LOW);
for (int digitCount = 5; digitCount >= 0; digitCount--) {
shiftOut(dataPin, clockPin, MSBFIRST, frame[digitCount]);
}
//take the latch pin high so the LEDs will light up again:
digitalWrite(latchPin, HIGH);
update_counter++;
if (update_counter == 1000) {
update_counter = 0;
}
if (!init_done) {
if (update_counter % 100 == 0) {
spin(0);
}
}
}
// -------------------------------- Date Functions ---------------------- //
void updateDate(time_t t) {
today[0] = digits[(day(t) / 10)];
today[1] = digits[(day(t) % 10)] + 1;
today[2] = digits[(month(t) / 10)];
today[3] = digits[(month(t) % 10)] + 1;
today[4] = digits[((year(t) - 2000) / 10)];
today[5] = digits[((year(t) - 2000) % 10)];
}
void displayDate(time_t t) {
frame[5] = digits[(day(t) / 10)];
frame[4] = digits[(day(t) % 10)] + 1;
frame[3] = digits[(month(t) / 10)];
frame[2] = digits[(month(t) % 10)] + 1;
frame[1] = digits[((year(t) - 2000) / 10)];
frame[0] = digits[((year(t) - 2000) % 10)];
}
// ------------------------------- Time Functions -------------------- //
void displayTime(time_t t) {
frame[5] = digits[(hour(t) / 10)];
frame[4] = digits[(hour(t) % 10)];
frame[3] = digits[(minute(t) / 10)];
frame[2] = digits[(minute(t) % 10)];
frame[1] = digits[(second(t) / 10)];
frame[0] = digits[(second(t) % 10)];
}
void displayBinaryTime(time_t t) {
int digit;
for (int digitCount = 5; digitCount >= 0; digitCount--) {
// digit zusammenbauen und dann invertieren
digit = 0;
digit |= ((hour(t) & (1 << digitCount)) >> digitCount) << 2;
digit |= ((minute(t) & (1 << digitCount)) >> digitCount) << 4;
digit |= ((second(t) & (1 << digitCount)) >> digitCount) << 6;
// bitWrite(digit,2,(bitRead(hour(t), digitCount)) );
// bitWrite(digit,4,(bitRead(minute(t), digitCount)) );
// bitWrite(digit,6,(bitRead(second(t), digitCount)) );
frame[digitCount] = digit;
}
}
// ----------------------------------- System Functions ----------------------------------- //
void dim(int direction, int lower_limit, int upper_limit) {
int range = upper_limit - lower_limit;
int shift_start = 1000 - range;
int write_out = 0;
int local_counter = 0;
if (update_counter > range) {
local_counter = update_counter - shift_start;
} else {
local_counter = update_counter;
}
if (direction == DOWN && local_counter % range <= range) {
write_out = 255 - (upper_limit - (local_counter) % range);
analogWrite(OutputEnable, write_out);
Serial.println("Down ->");
Serial.println(write_out);
} else {
write_out = 255 - (lower_limit + (local_counter % range));
analogWrite(OutputEnable, write_out);
Serial.println("UP ->");
Serial.println(write_out);
}
}
void spin(int digit) {
if (spinner_pos >= 6)spinner_pos = 0;
switch (spinner_pos) {
case 0: frame[digit] = 4;
break;
case 1: frame[digit] = 2;
break;
case 2: frame[digit] = 32;
break;
case 3: frame[digit] = 64;
break;
case 4: frame[digit] = 128;
break;
case 5: frame[digit] = 8;
break;
default: frame[digit] = 0;
break;
}
spinner_pos++;
};
void shrink(int direction, int *new_data) {
static int j = 0;
static int height = 0;
int bitmask = 0;
if (shrink_active == false) {
shrink_active = true;
j = 0;
if (direction == UP) {
height = 2;
} else {
height = 0;
}
}
switch (height) {
case 0: bitmask = 0x44;
break;
case 1: bitmask = 0xAA;
break;
case 2: bitmask = 0x10;
break;
default:
break;
}
if (update_counter % 100 == 0 && j < 7) {
if (j < 3) {
for (int digit = 0; digit < 6; digit++) {
frame[digit] &= ~bitmask;
}
if (direction == DOWN) {
height++;
} else {
height--;
}
Serial.print("Shrink.J = ");
Serial.println(j);
} else {
for (int digit = 0; digit < 6; digit++) {
frame[5 - digit] |= new_data[digit] & bitmask;
}
if (direction == DOWN) {
height--;
} else {
height++;
}
Serial.print("Shrink.J = ");
Serial.println(j);
}
j++;
}
}
void swipe(int direction, int *new_data) {
static int j = 0;
static int height = 0;
int bitmask = 0;
if (swipe_active == false) {
swipe_active = true;
j = 0;
if (direction == UP) {
height = 4;
} else {
height = 0;
}
}
switch (height) {
case 0: bitmask = 0x04;
break;
case 1: bitmask = 0x0A;
break;
case 2: bitmask = 0x10;
break;
case 3: bitmask = 0xA0;
break;
case 4: bitmask = 0x40;
break;
default:
break;
}
if (update_counter % 60 == 0 && j < 11) {
if (j < 5) {
for (int digit = 0; digit < 6; digit++) {
frame[digit] &= ~bitmask;
}
if (direction == DOWN) {
height++;
} else {
height--;
}
Serial.print("Swipe. J = ");
Serial.println(j);
} else {
for (int digit = 0; digit < 6; digit++) {
frame[5 - digit] |= new_data[digit] & bitmask;
}
if (direction == DOWN) {
height--;
} else {
height++;
}
Serial.print("Swipe. J = ");
Serial.println(j);
}
j++;
}
};
void combine(int *a) {
static int i = 0;
static int j = 0;
int current[6];
if (transition_active == false) {
transition_active = true;
memcpy(current, frame, 6 * sizeof(int));
j = 0;
}
if (update_counter % 33 == 0 && j < 18) {
Serial.print("i : ");
Serial.print(i);
Serial.print(" j : ");
Serial.println(j);
if (j % 3 == 0) {
frame[5 - i] |= a[i];
} else if (j % 3 == 1) {
frame[5 - i] &= ~current[i];
} else {
frame[5 - i] = a[i];
i++;
}
if (i == 6) { i = 0; }
j++;
}
}
void shift_right(int neu) {
for (int i = 0; i < 5; i++) {
frame[i] = frame[i + 1];
}
frame[5] = neu;
}
void transition(int *a) {
if (update_counter % 150 == 0 && cur_update != update_counter && shift_state < sizeof(today) / 2) {
//assuming the Array contains only ints,
//which have a sizeof 2 on this Arduino
Serial.println(sizeof(a));
cur_update = update_counter;
shift_right(a[6 - shift_state]);
shift_state++;
}
}
/*-------- Alarm Clock code ---------*/
const int AlarmClockPacketSize = 256;
byte AlarmBuffer[AlarmClockPacketSize];
int listenForAlarm() {
while (AlarmClock.parsePacket() > 0);
Serial.println("Any Alarm imminent?");
uint32_t packageBegin = millis();
while (millis() - packageBegin < 1500) {
int size = AlarmClock.parsePacket();
if (size >= AlarmClockPacketSize) {
Serial.println("Alarm seems to be imminent.");
AlarmClock.read(AlarmBuffer, AlarmClockPacketSize);
alarm_goal = (unsigned long) AlarmBuffer;
return 1;
}
}
Serial.println("No Alarm present!");
return 0;
}
/*-------- NTP code ----------*/
const int NTP_PACKET_SIZE = 48; // NTP time is in the first 48 bytes of message
byte packetBuffer[NTP_PACKET_SIZE]; //buffer to hold incoming & outgoing packets
time_t getNtpTime() {
while (Udp.parsePacket() > 0); // discard any previously received packets
//Serial.println("Transmit NTP Request");
sendNTPpacket(timeServer);
uint32_t beginWait = millis();
while (millis() - beginWait < 1500) {
int size = Udp.parsePacket();
if (size >= NTP_PACKET_SIZE) {
Serial.println("Receive NTP Response");
Udp.read(packetBuffer, NTP_PACKET_SIZE); // read packet into the buffer
unsigned long secsSince1900;
// convert four bytes starting at location 40 to a long integer
secsSince1900 = (unsigned long) packetBuffer[40] << 24;
secsSince1900 |= (unsigned long) packetBuffer[41] << 16;
secsSince1900 |= (unsigned long) packetBuffer[42] << 8;
secsSince1900 |= (unsigned long) packetBuffer[43];
return secsSince1900 - 2208988800UL + timeZone * SECS_PER_HOUR;
}
}
//Serial.println("No NTP Response :-(");
return 0; // return 0 if unable to get the time
}
// send an NTP request to the time server at the given address
void sendNTPpacket(IPAddress &address) {
// set all bytes in the buffer to 0
memset(packetBuffer, 0, NTP_PACKET_SIZE);
// Initialize values needed to form NTP request
// (see URL above for details on the packets)
packetBuffer[0] = 0b11100011; // LI, Version, Mode
packetBuffer[1] = 0; // Stratum, or type of clock
packetBuffer[2] = 6; // Polling Interval
packetBuffer[3] = 0xEC; // Peer Clock Precision
// 8 bytes of zero for Root Delay & Root Dispersion
packetBuffer[12] = 49;
packetBuffer[13] = 0x4E;
packetBuffer[14] = 49;
packetBuffer[15] = 52;
// all NTP fields have been given values, now
// you can send a packet requesting a timestamp:
Udp.beginPacket(address, 123); //NTP requests are to port 123
Udp.write(packetBuffer, NTP_PACKET_SIZE);
Udp.endPacket();
}